
CPC(HEP & NP), 2011, 35(2): 135–138 Chinese Physics C Vol. 35, No. 2, Feb., 2011

Controllable entanglement sudden birth

of Heisenberg spins *
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Abstract: We investigate the Entanglement Sudden Birth (ESB) of two Heisenberg spins A and B. The third

controller, qutrit C is introduced, which only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with

qubit B. We find that the DM interaction is necessary to induce the Entanglement Sudden Birth of the system

qubits A and B, and the initial states of the system qubits and the qurit C are also important to control its

Entanglement Sudden Birth.
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1 Introduction

Quantum entanglement is a key resource in quan-

tum information processing (QIP) [1]. Recently, en-

tanglement dynamics becomes an active subject. Yu

and Eberly firstly found an interesting phenomenon,

the so-called Entanglement Sudden Death (ESD)

[2, 3]. Contrary to the currently extensively discussed

sudden death of entanglement, Entanglement Sud-

den Birth (ESB) was introduced in Ref. [4]. As it

is named, ESB means entanglement can be created

nonsmoothly for a finite time [5], i.e., the initially

separable state becomes the entangled state at later

time.

Quantum simulation [6] of spin chains with many-

body interactions is another focus. And there has

been a lot of work on the thermal entanglement of

spin chains [7–16], which is a kind of static corre-

lation. Specifically, Refs. [15, 16] investigated the

thermal entanglement of the (1/2, 1) mixed spins sys-

tems under the effect of the spin-orbit Dzyaloshinskii-

Moriya (DM) interaction [17, 18].

These works arouse our interest in the ESB of spin

systems. Similar to Ref. [19], in this paper we inves-

tigate the entanglement dynamics of the system com-

posed of two Heisenberg spins A and B. However, here

we concentrate on its Entanglement Sudden Birth.

Moreover, we introduce the third controller, qutrit

C, which only has DM interaction with the qubit B.

Note in Ref. [19], the controller C is a qubit. A qu-

dit, with its higher dimension than a qubit, provides

certain benefits in QIP [20]. We find that the ESB of

the system depends on the DM interaction, the initial

states of the system and qutrit C.

2 Entanglement dynamics of system

For a bipartite system, it is convenient to adopt

the Wootters concurrence [21] measuring the degree

of entanglement. For two qubits, the concurrence can

be calculated by

C(ρ) = max(0,
√

λ1−
√

λ2−
√

λ3−
√

λ4), (1)
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where λi (i = 1,2,3,4) are the eigenvalues in decreas-

ing order of the matrix

R = ρ(σy ⊗σy)ρ
∗(σy ⊗σy). (2)

Here ρ∗ are the complex conjugation of ρ in the stan-

dard basis and σy is the Pauli matrix

σy =

(

0 −i

i 0

)

. (3)

The concurrence is monotone, C = 0 corresponds to

the separable state, and C = 1 to the maximal entan-

glement one.

Let’s consider the ESB of the system composed

of two Heisenberg spins A and B. Compared with

Ref. [19], here we introduce a qutrit C as the con-

troller, which only has DM interaction with qubit B.

The Hamiltonian of the whole system is

H = HAB +HBC
DM, (4)

with

HAB =
1

2
w1σ

x

A σx

B +
1

2
w2σ

y

A σy

B,

HBC
DM = ~D ·(~σB× ~TC). (5)

Choosing ~D = D~x, HBC
DM reduces to

HBC
DM = D(σy

B T z

C−σz

B T y

C), (6)

where T z, y denote the spin-1 operators

T y =
1√
2









0 −i 0

−i 0 −i

0 i 0









, T z =









1 0 0

0 0 0

0 0 −1









, (7)

and D is dimensionless.

We denote |g〉 (|e〉) as the ground (excited) state

of a qubit, |0〉, |1〉 and |2〉 as the basis of a qutrit.

The initial state of the whole system is chosen as

ρ0 = ρAB(0)⊗ρC(0) (8)

with

ρAB(0) = r|ϕAB〉〈ϕAB|+ 1

4
(1−r)I4×4,

ρC(0) = |ϕC〉〈ϕC|. (9)

Here

|ϕAB〉 = cos(α)|ee〉+sin(α)|gg〉,

|ϕC〉 = cos(β)|0〉+√
psin(β)|1〉

+
√

1−psin(β)|2〉, (10)

I4×4 is (4 × 4) square matrix. With the higher di-

mension, the qutrit provides two parameters β and

p to control the ESB of the system. This is an ad-

vantage compared with the controller being a qubit,

which has only one parameter [19].

The evolving density matrix of the whole system

at arbitrary time t is

ρ(t) = U(t)ρ0U(t)†, (11)

where U(t) = exp(−iHt) (~ = 1).

Tracing over the state of the qutrit C, the reduced

density matrix of system qubits A and B turns out to

be

ρAB = TrC[ρ(t)]. (12)

For the general parameters, the analytical solu-

tions of the system, even eigenvectors and eigenvalues

of the Hamiltonian, are quite complicated. Hence we

adopt the numerical simulations to study the effect of

DM interaction and the initial state of the controller

qubit on the ESB of the system. Our main results

are summarized in the following figures. Note in all

these figures the setting of the parameters α and r to

ensure the initial state of the system is separable.

Figure 1 shows the evolutions of the concurrence

of the system qubits ρAB with and without DM in-

teraction. It is expected that when D = 0 there is no

ESB in the system qubits. Setting w1, 2 = 1, one can

obtain the evolution operator with D = 0

U1 =















1 0 0 0

0 cos t −i sin t 0

0 −i sin t cos t 0

0 0 0 1















. (13)

Applying U1 to the state |ϕAB〉, simple computa-

tion shows this state does not evolve. Note the initial

state of the system is separable, so there is no en-

tanglement all the time. This is consistent with the

numerical results in Fig. 1. This figure shows when

there is no DM interaction D = 0, the concurrence of

the system equals zero all the time. However, when

DM interaction D 6= 0, there is no entanglement at the

early time, and it builds up later. Fig. 1 demonstrates

that whether there is ESB in the system qubits de-

pending on the DM interaction between qubit B and

qutrit C.

In Fig. 2, we investigate the evolutions of the con-

currence of the system qubits ρAB with the different

values of p, i.e., the state of controller qutrit C. It’s

easy to see that for the different values of p, the first

ESB time is the same, about t0 = 2. With the increase

of p, the maximum value of the evolution concurrence

Cmax also increases.
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Fig. 1. The evolutions of concurrence of the system, corresponding to D =0(left), 2(right), respectively. The

other parameters are α =
π

2
, r = 0.5, β =

π

4
, p= 0.5, w1 = w2=1.

Fig. 2. The evolutions of the concurrence of the system, corresponding to p = 0(left), 1(right), respectively.

The other parameters are α =
π

2
, r = 0.5, β =

π

4
, D = 2, w1 = w2=1.

Fig. 3. The variation of Cmax with respect to

p for different β. The other parameters are

α =
π

2
, r =0.5, D =2, w1 = w2=1.

We further study the relationship between Cmax

and p. Fig. 3 displays this relationship strongly corre-

lating with the other parameter β of the qutrit. When

β =
π

4
, Cmax are the two linear functions of p. And

β = π/4 and p = 1 are optimal values, with which

the system gets the maximum value of entanglement.

However, if β = π, Cmax is a constant. For the case

β =
2π

4
,
3π

4
, the relationship between Cmax and p is

complex. Generally speaking, Cmax firstly increases

and then decreases with the increase of p. Figs. 2

and 3 show that one can adjust the state of qutrit to

effectively control the ESB of system. Extensive nu-

merical results display the system concurrence is the

periodic function of β with the period T0 = π.

We also consider another kind of initially separa-

ble state, i.e., the small purity r in Fig. 4 and Fig. 5.

Fig. 4 shows that the ESB of the system relies on the

state of qutrit, too. When β =
2π

4
, there is no ESB,

whereas when β =
3π

4
, ESB exists.
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Fig. 4. The evolutions of the concurrence of the system, corresponding to β =
2π

4
(left),

3π

4
(right), respec-

tively. The other parameters are α =
π

4
, r = 0.2, p=0.3, D =3, w1 = w2=1.

Fig. 5. The variation of Cmax with respect to

p for different r. The other parameters are

α =
π

4
, β =

3π

4
, D =3, w1 = w2=1.

Making use of the maximum value of evolving con-

currence Cmax, we try to find the condition of the

ESB in the latter case. Fig. 5 plots Cmax with re-

spect to the parameter p of the qutrit. This figure

shows for the fixed initial purity r of the system, not

all the values of p can induce the ESB. For exam-

ple, corresponding to r = 0, ESB only exists when

p∈ (0.1, 0.5). With the increase of r, this ESB regions

become wider. What is more interesting, with the in-

crease of p, Cmax firstly increases and then decreases.

Cmax gets the maximum value at about p ≈ 0.3, ir-

respective to the value of r. With the increase of r,

Cmax becomes bigger. These results indicate that the

initial states of the system and the controller qutrit

are also important to control the ESB of system.

3 Conclusions

Using the concurrence, this paper considers the

system composed of two Heisenberg spin-
1

2
qubits A

and B. The third controller qubit C is introduced,

which only has the DM interaction with the qubit B.

We find that the DM interaction is necessary to in-

duce the Entanglement Sudden Birth for the system

qubits. We can also control the Entanglement Sud-

den Birth by adjusting the initial states of the system

and the qutrit C.
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