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Quantum phase transitions about parity breaking

in matrix product systems *
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Abstract: According to our scheme to construct quantum phase transitions (QPTs) in spin chain systems

with matrix product ground states, we first successfully combine matrix product state (MPS) QPTs with

spontaneous symmetry breaking. For a concrete model, we take into account a kind of MPS QPTs accompanied

by spontaneous parity breaking, though for either side of the critical point the GS is typically unique, and show

that the kind of MPS QPTs occur only in the thermodynamic limit and are accompanied by the appearance of

singularities, diverging correlation length, vanishing energy gap and the entanglement entropy of a half-infinite

chain not only staying finite but also whose first derivative discontinuous.
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1 Introduction

The study of quantum many-body systems is a

much more intensive research subject in the field of

condensed matter due to the richness of inherent com-

plexity of a large number of interacting particles,

among which quantum phase transitions (QPTs) oc-

cupy a distinguished position. These transitions, tak-

ing place at zero temperature, are driven by fluctua-

tions due to the Heisenberg uncertainty principle even

in the ground states (GSs) [1].

However, related articles [2, 3] showed that every

state, in particular, every GS, of a finite system char-

acterized by local Hamiltonian can be represented as

a matrix product state (MPS). The power of this rep-

resentation stems from the fact that in many cases

a low-dimensional MPS already yields a very good

approximation of the state [4]. MPSs are therefore

undoubtedly a convenient playground for studying

quantum many-body systems, especially for investi-

gating QPTs by the quantum information approach

[2, 5, 6] which deals with primarily quantum states,

from which corresponding parent Hamiltonians may

be constructed such that the quantum states arise as

exact GSs. M Fannes et al. and others [2, 7] already

indicated the possibility of such transitions in MPS

systems, in quasi-exactly solvable models. Michael

M. Wolf et al. [8] generalized the finding of the MPS

QPTs and showed how to engineer the QPT points

between phases with predetermined properties, and

pointed out that these MPS QPTs take place only

in the thermodynamic limit and are accompanied by

the appearance of singularities, diverging correlation

length, vanishing energy gap and other features which

differ from the standard paradigm: (i) the ground

state energy remains analytic, (ii) the entanglement

entropy of a half-infinite chain stays finite, and (iii)

MPS QPTs can occur without spontaneous symme-

try breaking since for either side of the critical point

the GS is typically unique.

According to our scheme to construct various

quantum phase transitions (QPTs) in spin chain sys-

tems with matrix product ground states [9], we first

successfully combine the matrix product state (MPS)

QPTs with spontaneous symmetry breaking. For a

concrete model, we take into account the kind of MPS

QPTs accompanied by spontaneous parity breaking,

though for either side of the critical point the GS

is typically unique. We also study the properties of

the concrete model, and show that, the kind of MPS

QPTs take place only in the thermodynamic limit and

are accompanied by the appearance of singularities,
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diverging correlation length, vanishing energy gap

and the entanglement entropy of a half-infinite chain

not only staying finite but also whose first derivative

is discontinuous and other aforementioned features

which differ from the standard paradigm [2, 7, 8].

2 Model and method

The 1D translation invariant MPS is given by

|Ψ〉=
1√
N

d
∑

i1,··· ,iN =1

Tr(Ai1 · · ·AiN )|i1, · · · , iN 〉, (1)

where d is the Hilbert space dimension of one-spin

in the chain and the set of D×D matrices {Ai, i =

1, · · · ,d} parameterize the N -spin state with the di-

mension D 6 dN/2. The normalization factor is ob-

tained as N = Tr(EN ), where E =
∑d

i=1
Āi⊗Ai is the

so-called transfer matrix with the bar denoting com-

plex conjugation. Supposing that the MPSs |Ψa〉 and

|Ψb〉 are represented respectively by the set of matri-

ces {Ai
a}= {A1

a,A
2
a · · ·Ad

a} and {Ai
b}= {A1

b,A
2
b · · ·Ad

b},
we can construct a new MPS

|Ψ〉 =
1√
N
∑

x=a,b

d
∑

i1,··· ,iN=1

Tr(Ai1
x · · ·AiN

x )|i1, · · · , iN〉

=
1√
N

d
∑

i1,··· ,iN =1

Tr(Ai1 · · ·AiN )|i1, · · · , iN 〉, (2)

where obviously Ai = Ai
a ⊕ Ai

b. The transfer ma-

trix E contained in N possesses definitely the sim-

ilarity relation E ∼ Ea ⊕Eab⊕Eba ⊕Eb, where Ea(b)

are the corresponding transfer matrices of |Ψa(b)〉 and

Eab ≡ ∑

i
Āa

i ⊗ Ai
b. As will be specified in detail

later, the established special linear combination of re-

lational MPSs regime for quantum many-body states

undoubtedly is a convenient and effective scheme

to construct and investigate various quantum phase

transitions. In this paper, by using the scheme, we

will take into account a kind of MPS QPTs appear-

ance accompanied by spontaneous symmetry break-

ing.

2.1 The properties of the kind of MPS QPT

Now let us introduce in detail the kind of MPS

QPT appearance with spontaneous symmetry break-

ing and study the kind of phase transition phenom-

ena by the aforementioned quantum information ap-

proach. For a concrete example, first let us consider

a parity conserved MPS |Ψa〉 with

A1
a =

[

1 0

0 1

]

, A2
a =

[

0 1

0 0

]

, A3
a =

[

0 0

1 0

]

, (3)

and a MPS |Ψb〉 with

A1
b =

[

1 0

0 γ

]

, A2
b =

[

0 1

0 0

]

, A3
b =

[

0 0

γ 0

]

, (4)

where γ > 0. When the dimensionless parameter γ is

not 0,1, we know that the MPS |Ψ〉b is parity non-

conserving [10, 11]. Then we construct the MPS |Ψ〉,
where its representative matrices are Ai = Ai

a⊕Ai
b(i =

1, 2, 3). We now study in detail the properties of the

MPS |Ψ〉 constructed above. The two largest absolute

eigenvalues of the transfer matrix E for this case are

λa = 2 with the normalized right and left eigenvectors

|λR
a 〉 and |λL

a 〉 and λb = 1 + γ2 with the normalized

right and left eigenvectors |λR
b 〉 and |λL

b〉, respectively

corresponding to Ea and Eb. Here for 0 6 γ < 1 and

γ > 1, the largest absolute eigenvalue is respectively

λa and λb; that is to say, in the thermodynamic limit,

|Ψ〉 is respectively in the region of the phase |Ψa〉 and

|Ψb〉 correspondingly. Hence, the point γ = 1 is a point

of phase transition. The expectation of the parity op-

erator PN under the thermodynamic limit, 〈PN 〉 is 1

in one phase and 0 in the other for 0 6 γ 6 1 and

γ > 1, respectively, as shown in Fig. 1; therefore, it

is an order parameter which signals a quantum phase

transition accompanied by spontaneous parity break-

ing at the point γ = 1.

Fig. 1. The expectation value of the parity op-

erator under the thermodynamic limit, 〈PN 〉

as a function of the dimensionless parameter

γ. 〈PN 〉 is 1 in one phase and 0 in the other

for 0 6 γ 6 1 and γ > 1, respectively.

Now we turn to the properties of local physical ob-

servables. For a local observable of l adjacent spins,

O
(1,l) ≡O[1]

i1
· · ·O[l]

il
the expectation is expressed as

〈Ψ |O(1,l)|Ψ〉=
Tr(E

O(1,l)EN−l)

Tr(EN )
, (5)

where E
O(1,l) = EOi1

EOi2
· · ·EOil

and EOk
≡

∑

i,i′
〈i|Ok|i′〉Āi⊗Ai′ , taking the thermodynamic limit
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N →∞, which reduces to

〈O(1,l)〉=















〈O(1,l)〉a =
〈λL

a |EO(1,l) |λR
a 〉

(λa)l
, γ 6 1,

〈O(1,l)〉b =
〈λL

b |EO(1,l) |λR
b 〉

(λb)l
, γ > 1.

(6)

For simplicity, let us study the properties of the op-

erator Jz at the critical point. The behaviors of the

physical quantity 〈Jz〉 for different values N as a func-

tion of the dimensionless parameter γ, are shown in

Fig. 2, where, in the vicinity of the point γ = 0.75,

from top to bottom the curves represent the curve

of 〈Jz〉 with N taking values of 5,10,15,20 and ∞ in

Fig. 2. The average magnetization 〈Jz〉 for dif-

ferent values N as a function of the dimension-

less parameter γ. In the vicinity of the point

γ = 0.75, from top to bottom the curves rep-

resent the curve of 〈Jz〉 with N taking val-

ues of 5, 10, 15, 20 and ∞ in turn. Only in

the thermodynamic limit, the first derivative

of the average magnetization 〈Jz〉 turns out to

be discontinuous, at the point γ = 1.

turn. It is readily seen that only in the thermody-

namic limit, the first derivative of the average mag-

netization 〈Jz〉 turns out to be discontinuous, at the

point γ = 1 from Fig. 2. It follows that the phase

transition between phases |Ψa〉 and |Ψb〉 can take place

only in the thermodynamic limit and is clearly man-

ifested by singularity of the above physical quantity.

The properties of the correlation in the vicinity of

the transition point are discussed below. Firstly, the

correlation function of two local blocks is

Cn[O(1,l)]≡〈Ψ |O(1,l)O(n+1,n+l)|Ψ〉−〈Ψ |O(1,l)|Ψ〉2. (7)

In the thermodynamic limit, for large distances n� 1

and in the vicinity of the transition point, this formula

reduces to

Cn[O(1,l)] =

(

λb(a)

λa(b)

)n

×
〈λa(b)

L|E
O(1,l) |λR

b(a)〉〈λL
b(a)|EO(n+1,n+l) |λR

a(b)〉
λ2l

a(b)

. (8)

It is readily seen that from the above equation, as

the coupling strength approaches its QPT, i.e., γ → 1

from either side of the critical point, we get λb →λa,

thus, the correlation length ξ =
1

ln(λa(b)/λb(a))
clearly

diverges at the phase transition point.

Here we undertake the study of the Hamiltonian

of the specified system. Given a MPS, the reduced

density matrix of k adjacent spins is given by

ρi1···ik,j1···jk
=

Tr((Āi1 · · · Āik
⊗Aj1 · · ·Ajk

)EN−k)

Tr(EN )
,

(9)

in the thermodynamic limit N → ∞, which reduces

to

ρi1···ik ,j1···jk
=















ρa
i1···ik ,j1···jk

=
〈λL

a |Āi1 · · · Āik
⊗Aj1 · · ·Ajk

|λR
a 〉

λk
max

γ 6 1,

ρb
i1···ik ,j1···jk

=
〈λL

b |Āi1 · · · Āik
⊗Aj1 · · ·Ajk

|λR
b 〉

λk
max

γ > 1.

(10)

This density matrix has at least dk −D2 zero eigen-

values (of course, it is sufficient that the following

inequality holds: dk > D2). We can always construct

a local Hamiltonian such that a given MPS is its GS.

Therefore, |Ψ〉 is the GS of any Hamiltonian which is

a sum of local positive operators supported in that

null-space. In particular, it is the GS of the Hamilto-

nian

H =
∑

i

ui(Pk), (11)

with Pk being the projector onto the null-space of ρk

and ui its translation to site i. Obviously, the Hamil-

tonian under the thermodynamic limit, takes a dis-

crete form, namely, for γ 6 1 and γ > 1, H = Ha and

H = Hb, where Ha = Hb(γ = 1). One form of Hb is

Hb =
∑

i

(

γ2 +2γ4

4
(Si

z(S
i+1
z )2

)

+
γ2 +2

4
(Si

z)
2Si+1

z

−γ3(Si
zS

i
+(Si+1

+ )2 +Si
−
Si

z(S
i+1
−

)2)

−γ((Si
+)2Si+1

z Si+1
+ +(Si

−
)2Si+1

−
Si+1

z )

+γ2(Si
+Si

zS
i+1
z Si+1

−
+Si

zS
i
−
Si+1

+ Si+1
z )

+
γ2−2γ4−2

4
(Si

z)
2(Si+1

z )2 +
γ2

4
Si

zS
i+1
z



No. 2 ZHU Jing-Min: Quantum phase transitions about parity breaking in matrix product systems 147

+
1

2
((Si+1

z )2−Si+1
z )+

γ4

2
((Si

z)
2−Si

z)), (12)

where Sz = |+〉〈+|− |−〉〈−|,S+ =

√
2

2
(Sx +iSy) and

S− =

√
2

2
(Sx−iSy). The above expressions character-

ize that H = Ha has parity symmetry and H = Hb is

parity non-conserving respectively. By construction

the GS energy is always zero, i.e., it is evidently ana-

lytic in γ and moreover |Ψ〉 is its unique GS for either

side of the critical point discussed in Refs. [2, 8, 12].

The analyticity of H and the uniqueness of its GS

for either side of the critical point immediately im-

ply that a nonanalyticity in the physical quantities

can only be caused by a vanishing energy gap at the

transition point.

In order to have a comprehensive and deeper un-

derstanding of the kind of MPS QPT, we study be-

low the property of the fixed point and the scal-

ing property of entanglement, the key quantity of

quantum information theory [13–16]. Specifically, we

resort to renormalization group approach to char-

acterize the long-wavelength behavior of the speci-

fied system. Similar to the standard Kadanof Block-

ing scheme, the coarse-graining procedure for ma-

trix product states could be achieved by merging

the representative matrices of neighboring sites as

A → A(pq) ≡ ApAq and subsequently performing a

fine-grained transformation A→A′ to select out new

representatives [17]. The transfer matrix in every step

transforms as E → E ′ ≡ E2 and an iterative pro-

cess hence leads to a fixed point E∞ ≡ Efp in which

only the vector(s) of largest eigenvalue(s) can sur-

vive. In terms of the MPS |Ψ〉 under consideration,

the normalized transfer operator of the fixed point is,

respectively, Efp = |λR
a 〉〈λL

a | and Efp = |λR
b 〉〈λL

b | for

0 6 γ 6 1 and γ > 1, and the corresponding repre-

sentative matrices of the fixed point are obtained as

{Ai
fp}= {Ai

a(fp)}, i = 1, · · · ,4} and {Ai
fp}= {Ai

b(fp), i =

1, · · · ,4} where

{Ai
a(fp)}=

{[

1 0

0 0

]

,

[

0 1

0 0

]

,

[

0 0

1 0

]

,

[

0 0

0 1

]}

(13)

and

{Ai
b(fp)}=

{[

1 0

0 0

]

,

[

0 1

0 0

]

,

[

0 0

γ 0

]

,

[

0 0

0 γ

]}

(14)

are respectively the representative matrices of the

MPSs |Ψ fp
a 〉 and |Ψ fp

b 〉 representing the fixed point of

the MPSs |Ψa〉 and |Ψb〉. That is to say, the fixed

point state of the specified system is respectively

|Ψ fp〉= |Ψ fp
a 〉 and |Ψ fp〉= |Ψ fp

b 〉 for 0 6 γ 6 1 and γ > 1.

The depicted renormalization group fixed point en-

ables a convenient calculation of the entanglement

entropy between one half-infinite chain and the other

which is equivalent to the entanglement entropy be-

tween the bipartite coarse-grained spins of the fixed

point, because they belong to an equivalence class of

D-dimensional MPSs where all elements of the class

are related by local unitary operations. In detail, the

entanglement entropy between the bipartite coarse-

grained spins is, respectively,

S =−Tr(ρ1 log2 ρ1) =−Tr(ρ1
a log2 ρ1

a) = 2, (15)

and

S = −Tr(ρ1 log2 ρ1) =−Tr(ρ1
b log2 ρ1

b)

=
2+4γ2 +γ4

(1+γ2)2
log2(1+γ2)− 4γ2 +2γ4

(1+γ2)2
log2 γ, (16)

for 0 6 γ 6 1 and γ > 1. Fig. 3 shows the behav-

ior of the entanglement entropy between the bipartite

coarse-grained spins of the fixed point, i.e., one half-

infinite chain and the other, S as a function of the

dimensionless parameter γ. It is obvious that at the

phase transition point γ = 1, the entanglement en-

tropy between one half-infinite chain and the other,

takes the value of 2, which implies that the entangle-

ment entropy of a half-infinite chain stays finite re-

flecting the fact that MPS QPTs cannot be described

in terms of conformal field theory [8, 18], and the first

derivative of it is discontinuous.

Fig. 3. The entanglement entropy between one

half-infinite chain and the other, S as a func-

tion of the dimensionless parameter γ. At the

phase transition point γ = 1, the entangle-

ment entropy between one half-infinite chain

and the other, takes the value of 2 and the

first derivative of it is discontinuous.

2.2 Brief summary

These facts show that this kind of MPS QPTs take

place only in the thermodynamic limit and is accom-

panied by the appearance of singularities, diverging
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correlation length, vanishing energy gap, and other

properties including that the ground state energy re-

mains analytic, and the entanglement entropy of a

half-infinite chain not only stays finite but also the

first derivative of it is discontinuous. In a word, what

is more important is that this kind of MPS QPTs can

occur, accompanied by spontaneous symmetry break-

ing, though for either side of the critical point the GS

is typically unique.

3 Conclusions

In conclusion, MPSs provide an effective tool for

investigating novel types of quantum phase transi-

tions that do not fit in the traditional framework.

We presented a new general and simple scheme to

construct various quantum phase transitions in spin

chain systems with matrix product ground states

using a kind of special linear combination of rela-

tional MPSs regime. It is worth pointing out that this

scheme has the advantage of combining MPS QPTs

with spontaneous symmetry breaking and based on

the idea of this scheme, one may investigate more

diverse kinds of quantum phase transitions which de-

serve to be investigated in future research.

Finally, I would like to thank professor Shun-Jin

Wang for valuable discussions.

References

1 Sachdev S. Quantum Phase Transitions. Cambridge: Cam-

bridge University Press, 1999

2 Fannes M, Nachtergaele B, Werner R F. Commun. Math.

Phys., 1992, 144: 443

3 Verstraete F, Porras D, Cirac J I. Phys. Rev. Lett., 2004,

93: 227205

4 Verstraete F, Cirac J I. 2005, arXiv:0505140 [cond-mat]

5 Affleck I, Kennedy T, Lieb E H, Tasaki H. Commun. Math.

Phys., 1988, 115: 477
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