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An approach to dark energy problem through

linear invariants *
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Abstract: The time evolution of vacuum energy density is investigated in the coherent states of inflationary

universe using a linear invariant approach. The linear invariants we derived are represented in terms of

annihilation operators. On account of the fact that the coherent state is an eigenstate of an annihilation

operator, the wave function in the coherent state is easily evaluated by solving the eigenvalue equation of the

linear invariants. The expectation value of the vacuum energy density is derived using this wave function.

Fluctuations of the scalar field and its conjugate momentum are also investigated. Our theory based on

the linear invariant shows that the vacuum energy density of the universe in a coherent state is decreased

continuously with time due to nonconservative force acting on the coherent oscillations of the scalar field,

which is provided by the expansion of the universe. In effect, our analysis reveals that the vacuum energy

density decreases in proportion to t−β where β is 3/2 for radiation-dominated era and 2 for matter-dominated

era. In the case where the duration term of radiation-dominated era is short enough to be negligible, the

estimation of the relic vacuum energy density agrees well with the current observational data.
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1 Introduction

Needless to say, there are plenty of convincing ev-

idences that the universe is now undergoing an ac-

celerated expansion driven by a dark energy that is

yet to be identified. This comes from recent observa-

tional data associated with large scale structure sur-

veys [1], type Ia supernova analysis [2–8], and cosmic

microwave background radiation mesurement [9–11].

The dark energy is in general responsible for the cur-

rent phase of accelerated expansion. Though cosmo-

logical constant (vacuum energy) seems a natural and

the simplest candidate for dark energy, the deep in-

consistency between theoretically estimated value of

cosmological constant and its observational limit led

to a cosmological constant problem. There is a broad

consensus that the cosmological constant problem is

the greatest challenge in modern cosmology. The

search for a complete physical explanation of the ori-

gin of an extremely small vacuum expectation value

is one of the most puzzling issues in particle physics

and astrophysics that we are facing today. An an-

other pending problem in cosmology is why the vac-

uum energy density is not exactly zero and happens

to be of almost the same scale as the matter energy

density precisely at the present epoch. It is the so-

called cosmic coincidence problem.

The Schrödinger picture of quantum (field) the-

ory is highly attractive in describing the evolution

of our universe and has been extensively developed

in connection with the problem of modern cosmol-

ogy [12–25]. In the previous work [12], we studied the

evolution of the vacuum energy density in the Fock

state using a unitary transformation approach in an

inflationary universe and investigated the cosmolog-

ical constant problem. Inflationary universe models

may be the most adequate theories to describe the

early epoch of universe since they provide a plausi-

ble scientific explanation for the creation of all of the

matter and energy in the unvierse [26]. Inflation was
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triggered by enormous vacuum energy density en-

dowed by spontaneous symmetry breaking of the

GUT (Grand Unified Theory) gauge symmetry. In

general, two types of massive scaler field are often

considered in the literature of cosmology, namely, a

minimal scalar field and a conformal scalar field.

In this paper, the evolution of vacuum energy den-

sity in a coherent state will be investigated on the

basis of an inflation scenario by solving quantum me-

chanical solutions for a time-dependent harmonic os-

cillator that governs the time behavior of the scalar

field. To meet our purpose, we take advantage of the

linear invariant theory. Indeed, the construction of

invariants (constants of motion) has attracted much

attention in the context of quantum mechanics as well

as classical mechanics since one of the key points in in-

vestigating dynamical systems with time-varying pa-

rameters is to find their invariants. It is well known

that linear invariants in addition to quadratic invari-

ants are very useful in investigating complete quan-

tum mechanical solutions of dynamical systems, in

particular those whose Hamiltonians are explicitly

dependent on time [27–32]. The reason why invari-

ant theory is very useful when studying the evolution

of quantum scalar field in an inflationary universe is

that the Hamiltonian associated with its description

in FRW (Friedmann-Robertson-Walker) spacetime is

actually a time-dependent form. The behavior of the

classical scalar field may be best followed quantum

mechanically by constructing an (over)complete set

of coherent states since these states are closely related

to classical behavior as far as quantum mechanics

permits. In quantum mechanics, the coherent states

are defined as eigenstates of the annihilation oper-

ator. The uncertainty relation in coherent states is

the same as the minimum uncertainty relation in the

Fock state. Interest in the investigation of cosmology

and astroparticle physics in connection with the co-

herent states has gradually increased in the literature

[21–25].

2 Inflationary universe model

A postulation of the inflation scenario is that the

universe underwent a period of accelerated expansion

based on the early universe dominance of a vacuum

energy density characterized by the scalar field. Typ-

ically, it is assumed that such an inflation starts by

GUT symmetry breaking at the very initial time of

the universe and ends at the reheating time for some

reason [33]. The inflation paradigm has now become

a vital cog in the universe creation theory since it nat-

urally leads to a solution to the horizon problem and

provides not only the seeds for the formation of the

large scale structure of our universe but also the tem-

perature fluctuations in the CMB (Cosmic Microwave

Background). The main predictions of the inflation-

ary universe model are flatness of the universe, flat-

ness of the spectrum of density perturbations, homo-

geneous and isotopic character of the CMB radiation,

etc.

The flat FRW spacetime with the line element is

given by

ds2 =−dt2 +R2(t)(dr2 +r2dθ2 +r2 sin2 θdϕ2), (1)

where R(t) is a scale factor. We choose R(t) for our

expanding universe as a power-law form such that

R(t) = (t/b)
β/3

, where b and β are positive real con-

stants [34, 35]. Note that b has the dimension of time

while β is dimensionless. In an inflationary universe,

it is well known that the behavior of the scalar field

is governed by a differential equation of the form [36]

φ̈k +3Hφ̇k +V ′(φk) = 0, (2)

where φk is a k-th mode scalar field, H is the Hubble

parameter, and V (φk) is a scalar field potential. Re-

garding that H takes the form H = Ṙ(t)/R(t) =

β/(3t), in this power-law cosmology, the Hubble pa-

rameter decreases with time in proportion to 1/t. On

the other hand, if we say for your reference, H is

usually assumed to be constant during inflation sub-

jected to de Sitter spacetime. Under the framework of

the Hartree approximation, V (φk) is given by a time-

dependent form [37, 38]: V (φk) =
1

2
ω2

k
(t)φ2

k
. In this

representation, the time-dependent frequency ωk(t)

can be written as [20]

ωk(t) =

(

m2 +ξR(t)+
k2

R2(t)

)1/2

, (3)

where m is curvature of the potential and R(t) is the

Ricci scalar defined by

R(t) = 6

(

R̈(t)

R(t)
+
Ṙ2(t)

R2(t)

)

. (4)

The case ξ = 0 corresponds to the cosmologies with

a minimally coupled scalar field (CMCSF) while ξ =

1/6 yields the cosmologies with a conformally coupled

scalar field (CCCSF).

Then, the type of Eq. (2) is a kind of time-

dependent harmonic oscillator,

φ̈k +
β

t
φ̇k +ω2

k
(t)φk = 0. (5)

The term including φ̇k in Eq. (5) gives nonconser-

vative force to the coherent oscillations of the scalar
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field. In the Schrödinger picture, let us define a conju-

gate field momentum such that π̂k =−(i/V)(∂/∂φk),

where V is a characteristic volume chosen so that the

size of V−1/3 is the same as the energy scale at a

boundary time b. To meet this requirement, we as-

sume that the boundary condition at that time is the-

oretically known or obtainable from rigorous evalua-

tions. The Hamiltonian, then, can be formulated in

the form [12]

Ĥk(φ̂k, π̂k, t) =
π̂

2
k

2R3(t)
+

1

2
R3(t)ω2

k
(t)φ̂2

k
. (6)

Using Hamilton’s equations of motion, we can easily

check that this Hamiltonian exactly yields the clas-

sical equation of motion, Eq. (5). The commutation

relation between φ̂k and π̂k is given by [φ̂k, π̂k′ ] =

(i/V)δkk′ . We would like to investigate the evolution

of vacuum energy density in a coherent state by solv-

ing quantum solutions related to the Hamiltonian of

Eq. (6) through linear invariant theory.

3 Coherent state

As a preliminary to full quantum description of

the system, let us denote two linearly independent

homogeneous real solutions of the classical equation

of motion, Eq. (5), as εk,1(t) and εk,2(t). Then, the

general classical solution can be written as

φk(t) = c1εk,1(t)+c2εk,2(t). (7)

In terms of εk,1(t) and εk,2(t), it is possible to define

a time constant Wk such that [39]

Wk = 2R3(t)[εk,1(t)ε̇k,2(t)− ε̇k,1(t)εk,2(t)]. (8)

As you can see at some later time, this is necessary

in a quantum description of a time-dependent har-

monic oscillator such as ours in this paper. When we

find quantum solutions of a dynamical system whose

Hamiltonian explicitly depends on time, the introduc-

tion of quantum invariant quantities is very useful.

In fact, the method of dynamical invariants is widely

used in the analysis of the behavior of quantum sys-

tems. From the Liouville-von Neumann equation for

the linear invariant operator Îk,

dÎk
dt

=
∂ Îk
∂ t

+
V
i
[Îk,Ĥk] = 0, (9)

we obtain

Îk = âk exp[iηk(t)] , (10)

where

âk =

√

V
Wk

(

Wk

2εk(t)
[1− iYk(t)]φ̂k +iεk(t)π̂k

)

, (11)

ηk(t) =

∫t

b

Wkdt′

2ε2
k
(t′)R3(t′)

+ηk(b). (12)

with Yk(t) = 2R3(t)εk(t)ε̇k(t)/Wk and εk(t) is a time-

dependent classical solution of the following differen-

tial equation,

ε̈k(t)+
β

t
ε̇k(t)+ω

2
k
(t)εk(t)− W 2

k

4R6(t)ε3
k
(t)

= 0. (13)

In fact, εk(t) is related to εk,1(t), and εk,2(t) by

εk(t) = [ε2
k,1(t)+ε

2
k,2(t)]

1/2 [39].

We can readily show that âk and its Hermitian

adjoint, â†
k
, satisfy the boson commutation relation

of the form [âk, â
†

k′ ] = δkk′ . This implies that âk and

â†
k

are ladder operators. Namely, âk is an annihila-

tion operator while â†
k

is a creation operator. Indeed,

the ladder operators play an important role in formu-

lating quantum mechanics of dynamical systems.

After the publication of Glauber’s work [40],

which introduced the coherent state of the harmonic

oscillator, coherent states and their generalizations

became an important concept in modern physics. Co-

herent states have several outstanding nonclassical

properties, such as sub-Poissonian statistics, correla-

tion in the number fluctuations, higher order squeez-

ing, and so on [41, 42]. There are large amounts of

physical systems including cosmology for which a de-

scription in terms of coherent states is available [21–

23].

Let us express the eigenvalue equation for Îk in

the form Îk|αk〉= λk|αk〉, where λk is the eigenvalue

and |αk〉 the eigenstate. Since Îk is represented in

terms of the annihilation operator, |αk〉 is a coher-

ent state. If we consider Eq. (10), λk is given by

λk= αk exp[iηk(t)], where αk is the eigenvalue of the

annihilation operator:

âk|αk〉=αk|αk〉. (14)

In addition to the Fock state representation, an (over)

complete normalized set of coherent states for the

scalar field deserves to be established in order to an-

alyze the vacuum energy density since the coherent

state provides a useful basis for expanding the oper-

ators of scalar field.

By solving Eq. (14) in configuration space after

the substitution of Eq. (11), we have a coherent state

in the form

〈φk|αk〉=

( VWk

2ε2
k
(t)π

)1/4

exp

{√
VWk

εk(t)
αkφk

− VWk

4ε2
k
(t)

[1− iY (t)]φ2
k
− 1

2
|αk|2−

1

2
α2

k

}

.(15)
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We, however, need to multiply the above equation

by an additional time-dependent phase factor in or-

der to obtain a complete coherent state satisfying the

Schrödinger equation, such that

〈φk|ψk〉= 〈φk|αk〉eiϑk(t), (16)

where ϑk(t) is a time-dependent phase. From the sub-

stitution of Eqs. (6) and (16) into the Schrödinger

equation, we get

ϑk(t) =−1

2

∫t

b

Wkdt′

2ε2
k
(t′)R3(t′)

+ϑk(b). (17)

The direct differentiation of Eq. (11) with respect to

time leads to dâk(t)/dt=−iWkâk(t)/[2ε2
k
(t)R3(t)], so

that

âk(t) = âk(b)exp

[

−i

∫t

b

Wkdt′

2ε2
k
(t′)R3(t′)

]

. (18)

By taking into account Eq. (11), we can easily see

that the eigenvalue of Eq. (14) can be written as

αk(t) =

√

V
Wk

(

Wk

2εk(t)
[1− iYk(t)]φk(t)+iεk(t)πk(t)

)

,

(19)

where φk(t) is the classical scalar field represented in

Eq. (7) and πk(t) is the conjugate classical momen-

tum that is given by πk(t) = R3(t)φ̇k(t). If we con-

sider Eq. (7), Eq. (19) can be divided into real and

imaginary parts such that αk =αk,R +iαk,I, where

αk,R =

√
VWk

2εk
(c1εk,1 +c2εk,2), (20)

αk,I =

√

V
Wk

R3(t)[εk(c1ε̇k,1 +c2ε̇k,2)

−ε̇k(c1εk,1 +c2εk,2)]. (21)

Now, it is possible to represent αk(t) in terms of its

amplitude and phase:

αk(t) =αk0e
iσk(t), (22)

where

αk0 =
√

α2
k,R +α2

k,I

and σk(t) = tan−1 (αk,I/αk,R). The substitution of

Eqs. (20) and (21) into αk0 gives

αk0 =
1

2

√

VWk(c21 +c22). (23)

This is constant with time as expected. The dif-

ferentiation of σk(t) with respect to time after fur-

ther inserting Eqs. (20) and (21) yields dσk(t)/dt =

−Wk/[2ε
2
k
(t)R3(t)]. Therefore σk(t) becomes

σk(t) =−
∫t

b

Wkdt′

2ε2
k
(t′)R3(t′)

+σk(b) [=−ηk(t)]. (24)

4 Fluctuations and vacuum energy

density

Now, taking into account the effect of expansion

of the universe, we study the quantum fluctuations.

It is emphasized by Sakharov that the cosmologi-

cal evolution is affected by the quantum fluctuations

[43]. Accordingly, the quantum primordial fluctua-

tions should have expanded towards the present time

leading not only to classical energy density pertur-

bations but also the decoupling from the cosmologi-

cal background to the observable galaxies, clusters of

galaxies, and superclusters [43]. The fluctuation of a

certain quantum variable x̂k in the coherent state is

defined by (∆xk)coh = [〈ψk|x̂2
k
|ψk〉−(〈ψk|x̂k|ψk〉)2]1/2.

According to this, we can easily evaluate the fluctua-

tions of φ̂k and π̂k by taking advantage of Eq. (16):

(∆φk)coh = εk(t)

(

1

VWk

)1/2

, (25)

(∆πk)coh =
1

2εk(t)

(

Wk

V [1+Y 2
k
(t)]

)1/2

. (26)

Note that these fluctuations explicitly depend on

time. Due to nonconservative force acting on the

coherent oscillations of the scalar field, that is pro-

vided by the expansion of the universe, it is expected

that the amplitude of classical solution Eq. (7) de-

creases with time. This may also drive εk(t) to be

smaller as time goes by. The above two equations

therefore imply that (∆φk)coh decreases with time

whereas (∆πk)coh increases.

The limitation in quantum mechanics, unlike in

classical mechanics, on how accurately one can mea-

sure any two non-commuting observables is well doc-

umented by the famous Heisenberg uncertainty rela-

tion. From Eqs. (25) and (26), the uncertainty prod-

uct is nothing but

(∆φk)coh(∆πk)coh =
1

2V [1+Y 2
k
(t)]1/2

>
1

2V . (27)

Thus, we can confirm in this case that the uncertainty

principle always holds. The uncertainty product in

the coherent state for the time-dependent harmonic

oscillator is not 1/2 (or, in the case here, not 1/(2V))

but more or less larger than that. In fact, the uncer-

tainty product increases depending on Yk(t) which is

closely related to the variation of εk with respect to

time. The time variation of εk may give rise to a de-

creasing feature of scalar field due to the expansion

of the universe. If ξ→ 0 and β→ 0, the Hamiltonian

Eq. (6) no longer depends on time and εk becomes a

constant. Then, Eq. (27) reduces to 1/(2V) which is
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familiar to us in the coherent states of a simple har-

monic oscillator.

From the absolute square of Eq. (16), we see that

the probability density can be represented in terms

of (∆φk)coh such that

|〈φk|ψk〉|2 =
1√

2π(∆φk)coh
exp

[

− (φk−〈φk〉coh)2
2(∆φk)2coh

]

,

(28)

where 〈φk〉coh is the expectation value of φ̂k in the co-

herent state and is given by 〈φk〉coh = (∆φk)coh(αk +

α∗
k
). Clearly, Eq. (28) is the Gaussian form which is

very common. Since (∆φk)coh explicitly depends on

time, it is expected that the shape of the evolution

for Eq. (28) may somewhat change as time goes by.

However, when there are no extra perturbations, the

wave packet preserves Gaussian form once its initial

shape is Gaussian.

The very earlier epoch when the universe was

dominated not by matter or relativistic particles

but by the action of a scalar field was character-

ized by vacuum energy density which dictated in-

flation of the universe. Now we are going to inves-

tigate the time evolution of the vacuum energy den-

sity. The classical vacuum energy density is given by

ρk = φ̇2
k
/2 +ω2

k
(t)φ2

k
/2. If we consider the relation

φ̇k = πk/R
3(t) and convert the classical variables φk

and πk into quantum variables φ̂k and π̂k, the vac-

uum energy density operator is constructed in the

form ρ̂k = π̂
2
k
/[2R6(t)] + ω2

k
(t)φ̂2

k
/2. This is some-

what different from the Hamiltonian represented in

Eq. (6). In fact, the role of a Hamiltonian is restricted

to only the generator of the classical equation of mo-

tion when the given Hamiltonian explicitly depends

on time [44, 45]. The expectation value of ρ̂k in the

coherent states can be evaluated from

ρk(t) =
1

2R6(t)
〈ψk|π̂2

k
|ψk〉+

1

2
ω2

k
(t)〈ψk|φ̂2

k
|ψk〉. (29)

After a little algebra with the help of Eq. (16) and

considering Eq. (22), we get

ρk(t) =
Πk,α(t)

2V

(

b

t

)β

, (30)

where

Πk,α(t) =
1

4R3(t)ε2
k
(t)Wk

{2α2
k0{2W 2

k
Yk(t)sin[2σk(t)]

+[4ω2
k
(t)ε4

k
(t)R6(t)

−W 2
k
(1−Y 2

k
(t))]cos[2σk(t)]}

+(1+2α2
k0)[4ω

2
k
(t)ε4

k
(t)R6(t)

+W 2
k
(1+Y 2

k
(t))]}. (31)

To understand the evolution of the vacuum energy

density, it is necessary to know the time behavior of

Πk,α(t). In the next section, this quantity will be an-

alyzed for single scalar field cosmology.

5 Single scalar field cosmology

To investigate the wave function derived in the co-

herent state, we should know the explicit form of the

classical solutions of Eq. (5), i.e. εk,1(t) and εk,2(t).

However, the relevant mathematical procedures are

somewhat complicated. We therefore consider only a

single scalar field cosmology in this section. Then, the

frequency Eq. (3) reduces to ω(t) = (m2 +γ2/t2)
1/2

,

where γ2 =
2

3
ξβ(2β−3). By regarding this, the two

linearly independent classical solutions of Eq. (5) are

given by

ε1(t) = ε0(mt)
(1−β)/2Jν(mt), (32)

ε2(t) = ε0(mt)
(1−β)/2Nν(mt), (33)

where ε0 is a constant which has a dimension of

energy, Jν and Nν are the first and the second

kind Bessel functions, and under subscript is ν =
√

|(1−β)2−4γ2|/2.

According to Ref. [36], β can be expanded about

Ω0 = 1 where Ω0 is the ratio of the present energy

density to the critical energy density such that

β ' (3/2)[1−(Ω0−1)/4+ · · · ]
radiation-dominated era, (34)

β ' 2[1−(Ω0−1)/5+ · · · ]
matter-dominated era. (35)

Since it turns out from recent observations that

Ω0 ' 1 with fairly reliable precision, we can say that

β ' 3/2 for radiation-dominated era and β ' 2 for

matter-dominated era. Therefore. for the sake of sim-

plicity, we take β = 3/2 and β = 2 for each epoch,

respectively.

Based on the above arguments, the probability

densities in radiation- and in matter-dominated era

are plotted in Fig. 1. From this figure, we see that the

probability densities not only oscillate but also con-

verge to the origin (φ= 0) with time. The converging

feature of the probability density may reflect the de-

creasing property of the scalar field along its time evo-

lution. As you can see, the probability density which

belongs to the matter-dominated era converges more

drastically to the origin than that which belongs to

the radiation-dominated era. This means that the

ratio of decreasing for the scalar field (and, conse-
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quently, vacuum energy density characterized by the

scalar field) grows as the evolution period of the uni-

verse crosses from the radiation-dominated era to the

matter-dominated era.

Fig. 1. The time evolution of the probability

density |〈φ|ψ〉|2 for the CMCSF (ξ = 0) with

β = 3/2 (a) and β = 2 (b) in the coherent

state as a function of φ and t. Note that (a)

belongs to the radiation-dominated era whilst

(b) to the matter-dominated era. We used

c1 = c2 = 1, ε0 = 1, m = 3, b = 1, δ = 0,

and V =1. For convenience and simplicity, all

parameters are taken to be dimensionless.

We have also plotted fluctuations (∆φ)coh and

(∆π)coh and uncertainty relation (∆φ)coh(∆π)coh in

Fig. 2. The fluctuation of the scalar field diminishes

with time owing to the decrease in its amplitude dur-

ing the evolution of the universe. On the other hand,

the fluctuation of its conjugate momentum increases.

But, the corresponding uncertainty product eventu-

ally does not significantly deviate from 1/(2V) which

is the minimum value that quantum mechanics per-

mits, except for a very small region that starts from

initial time.

Now, to analyze the behavior of fluctuations and

vacuum energy density, we assume

mt� 1. (36)

It is shown in Appendix A that this assumption is in

general valid for t> tr where tr is the time at the be-

ginning of reheating. Then, the asymptotic behavior

Fig. 2. Fluctuations, (∆φ)coh (a) and (∆π)coh
(b), and uncertainty relations, (∆φ)coh×

(∆π)coh (c), for various values of m as a func-

tion of t. The value of m is 1 for the solid line,

3 for the long dashed line, and 5 for the short

dashed line. We used ξ = 0, β = 3/2, b = 1,

V = 1, and ε0 = 1. Like the previous figure, all

parameters are taken to be dimensionless.

of Bessel functions in Eqs. (32) and (33) becomes [46]

Jν(x)'
√

2

πx
cos
(

x−ν π

2
− π

4

)

, (37)

Nν(x)'
√

2

πx
sin
(

x−ν π

2
− π

4

)

. (38)

In particular, for the case of β = 2 and ξ = 0

which corresponds to the matter-dominated era in

CMCSF, the approximation signs in the above two

equations are converted to equal signs. From now

on, these approximations for Jν(mt) and Nν(mt)

that appeared in Eqs. (32) and (33) will be used

for all of the relevant evaluations. Then, the am-

plitude and phase given in Eqs. (23) and (24) re-

duce to α0 = ε0[V(c21 +c22)/(πb
βmβ−1)]1/2 and σ(t) =
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−m(t − b) + σ(b). And Eq. (22) becomes α(t) =

α0 exp[−i(mt+δ)], where δ is a readjusted phase:

δ=−mb−σ(b).

By using these, the coherent state wave function

given in Eq. (16) yields

〈φ|ψ〉 =

[

mV
π

(

t

b

)β
]1/4

exp

{

α0e
−i(mt+δ)

×





√

2mV
(

t

b

)β

φ−α0 cos(mt+δ)





−V
4t

(

t

b

)β

(2mt+iβ)φ2− i

2
[m(t−b)

−2ϑ(b)]

}

. (39)

The wave packet associated with this wave function

oscillates back and forth about φ = 0 like a classical

one. For β= 0 and V = 1, the above equation exactly

recovers to that of the well known simple harmonic

oscillator [47].

By the way, the fluctuations and uncertainty re-

lations, Eqs. (25)–(27), reduce to

(∆φ)coh =

[

1

2Vm

(

b

t

)β
]1/2

, (40)

(∆π)coh =

{

m

2V

[

1+

(

β

2mt

)2
]

(

t

b

)β
}1/2

, (41)

(∆φ)coh(∆π)coh =
1

2V

[

1+

(

β

2mt

)2
]1/2

. (42)

Now, it is much clearer that (∆φ)coh decreases with

time meanwhile (∆π)coh increases. Therefore, a natu-

ral squeezing for the scalar field is brought out as time

goes by. If we regard the condition given in Eq. (36)

and the situation that the largest value of β does not

exceed 2 according to Eqs. (34) and (35), the added

term [β/(2mt)]2 inside the square bracket of Eqs. (41)

and (42) is quite small enough that we can ignore it.

Consequently, the uncertainty product is nearly the

same as the standard value of the simple harmonic

oscillator.

Now let us see the evolution of the vacuum energy

density. With the use of Eqs. (37) and (38), Eq. (31)

reduces to

Πα(t) =
1

8mt2
{2α2

0{(β2 +4γ2)cos[2(mt+δ)]

+4mtβ sin[2(mt+δ)]}+(1+2α2
0)(8m

2t2

+β2 +4γ2)}. (43)

By further consideration of Eq. (36), the leading term

under the assumption that α0 is not so large yields

Πα ' (1+2α2
0)m (constant). Thus, from the substi-

tution of this into Eq. (30), we have

ρ(t)' ρ(b)

(

b

t

)β

, (44)

where ρ(b) is total energy density at a boundary time

b, which is given by

ρ(b) = (1+2α2
0)m/(2V). (45)

The result Eq. (44) shows that the vacuum energy

density decreases in proportion to t−β . Therefore, we

can readily confirm that

ρ(t) ∝ 1/t3/2 radiation-dominated era, (46)

ρ(t) ∝ 1/t2 matter-dominated era. (47)

Thus, from these equations, it should be noted

that the decrease in vacuum energy density for the

matter-dominated era is more rapid than that of

the radiation-dominated era. This consequence thor-

oughly corresponds to the previous analysis carried

out from the time behavior of Fig. 1 associated with

the probability densities, which reveals faster conver-

gence of the scalar field for the matter-dominated era

than that for the radiation-dominated era. Moreover,

these time behaviors for ρ(t) actually agree with the

recent result of Fock state analysis [12]. Though we

have considered single scalar field cosmology in this

section, the time evolution of ρ(t) in multi scalar field

cosmology may make no significant difference from

the one obtained here since it is expected that the

decrease in the vacuum energy density is actually re-

lated to the expansion term (β/t)φ̇k in Eq. (5) rather

than ω2
k
(t)φk term.

From observations [11], it is well known that the

order of the vacuum energy density is the same as

that of the matter energy density. This may strongly

imply that there is every possibility that the origins

of the two energy densities are not so different and

also their behaviors of time evolution are the same or

at least very similar to each other.
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6 Summary and conclusion

Using linear invariant theory, we have studied the

inflationary universe in a coherent state with empha-

sis on investigating the time evolution of the vacuum

energy density. The Hamiltonian associated with the

classical equation of motion Eq. (5) governing the be-

havior of the scalar field is given by Eq. (6). Since this

is evidently a time-dependent form, the evolution of

the scalar field in the inflation scenario is described

by a time-dependent harmonic oscillator. Indeed, lin-

ear invariant theory is one of the useful methods in

analyzing quantum properties of the time-dependent

Hamiltonian system. By means of the fact that the

time derivative of an invariant quantity should vanish,

quantum linear invariants Îk are constructed. From

Eq. (10), we can see that Îk is expressed in terms of

annihilation operator. Using the fact that the eigen-

state of âk is a coherent state, we have established

the coherent state of the system through linear in-

variant formulation. The configuration space repre-

sentation of the coherent state including full phase

factor is given by Eq. (16) with Eqs. (15) and (17).

We also showed in Eq. (22) that the eigenvalue of

the annihilation operator can be expressed in terms

of its time-constant amplitude and time-dependent

phase. Apparently, this simple formula makes it easy

to describe the quantum feature of the system in the

domain of the coherent state. The fluctuations and

the corresponding uncertainty relation are given in

Eqs. (25)–(27). If we regard that εk(t) decreases with

time, the fluctuation (∆φk)coh also decreases as time

goes by. On the other hand, (∆πk)coh increases. The

uncertainty product, however, hardly varies with time

except for a very little initial time interval which can

be ignored. As you can see from Eq. (28), the prob-

ability density in the coherent state follows Gaussian

form peaked at 〈φk〉coh, where the standard deviation

is (∆φk)coh. Though the shape of the Gaussian wave

packet can be changed by external driving forces, the

fluctuations of the Gaussian wave packet do not de-

pend on external forces [48].

The expectation value of the vacuum energy den-

sity in the coherent state is given by Eq. (30) with

Eq. (31). To analyze the time evolution of the vacuum

energy density, it is necessary to make out the time

behavior of Πk,α(t). For clearer analysis of the time

evolution of the vacuum energy density and accompa-

nying quantum behaviors associated with the scalar

field, we have taken in Sec. 5 the single scalar field

cosmology whose mathematical manipulation seems

easier to manage. Our analysis shows that the vacuum

energy density decreases in proportion to t−3/2 for the

radiation-dominated era and in proportion to t−2 for

the matter-dominated era. In particular, according

to this result, the time evolution of the vacuum en-

ergy density within the matter-dominated era is in

fact exactly the same as that of dust matter or radia-

tion density [49]. In the case where the duration term

of the radiation-dominated era is very short enough

to be negligible, the estimation of the relic vacuum

energy density agrees well with the current observa-

tional data. The nonconservative force acting on the

coherent oscillations of the scalar field, which is pro-

vided by the expansion of the universe, is responsible

for the decrease in vacuum energy density.

If we consider that the age of the universe is at

least more than 10 billion years, the observational

consequence that the order of the vacuum energy

density is precisely the same as that of dust mat-

ter is remarkable. In the light of this situation, it

may be reasonable to think that the two energy den-

sities would have undergone the same or very simi-

lar types of time evolution. Recently, the possibility

of interaction between dark energy and dark matter

has been proposed and it has become a common is-

sue in cosmology [50–54]. The effects of these in-

teractions on the evolution of the universe may offer

a mechanism for alleviating the coincidence problem.

Though the very early epoch is dominated by the vac-

uum energy density, we can think that not only the

vacuum energy density decreases with time according

to the expansion of the universe but also some frac-

tion of the remaining vacuum energy density might

have been converted into matter energy density due

to their possible interaction. According to our the-

ory, the present energy density would be roughly es-

timated from Eq. (44) by taking a starting boundary

time as b = tr since the boundary condition at that

time is well known theoretically. Based on the recent

observational data [11, 55] which show that the vac-

uum energy density is 73% and almost all remnant is

matter energy density since radiation density is neg-

ligible, we can simply represent matter and vacuum

energy densities at the present epoch in terms of the

total energy density obtained from such estimation

as ρM(t) = 0.27ρ(t) and ρΛ(t) = 0.73ρ(t), respectively,

where the time behavior of ρ(t) follows Eqs. (46) and

(47). So long as the present predominance of vacuum

energy density over matter energy density continues

in the future, the universe would maintain accelera-

tory expansion owing to the positive acceleration, as

it has until now. In other words, the speed of the

expansion increases as time goes by.
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In conclusion, our theory based on the linear in-

variant approach shows that the (vacuum) energy

density of the universe in the coherent state decreases

continuously with time according to the expansion of

the universe. This agrees well with our previous in-

vestigation [12] performed in the Fock state using an-

other method which was the unitary transformation

approach. So far, a large class of alternative dark en-

ergy models have emerged due to the difficulty [56]

in explaining the current states of dark energy rely-

ing on the previous conventional theory of vacuum

energy. Most of the alternative theories suggest dif-

ferent candidates for the dark energy instead of the

cosmological constant. On the other hand, the pro-

cedure in this work does not demand exclusion of the

possibility that the identity of the dark energy is the

cosmological constant, which is the early primary pre-

sumption in the history of the inflationary universe

model.

Appendix A

Proof of the validity of mt�1 given in Eq. (36)

In this appendix, we estimate the size of mt in order

to demonstrate the validity of the assumption in Eq. (36).

According to the GUTs, the energy scale at the beginning

of reheating is 1014 GeV, while the time scale at that mo-

ment is tr ' 10−34 s (for instance, see Refs. [57, 58]). A

suitable choice of constant b with a consideration of the

theoretically known boundary condition may enable us to

describe the time evolution for the expectation value of

ρ̂. If we take the single scalar field cosmology with ξ= 0,

Eq. (6) exactly recovers the Hamiltonian of the familiar

simple harmonic oscillator at t = b. In this case, ω(t)

becomes m. We therefore see that m can be estimated

as the scale of the vacuum energy at a boundary time b.

This fact can also be confirmed from Eq. (45), which just

shows that m is roughly the same as the energy scale at

time b.

For the radiation-dominated era, it may be favorable

to choose b = tr. Then, we can take m ' 1014 GeV at

t= tr(' 10−10 GeV−1). From this, we have

mt' (1014 GeV)(10−10 GeV−1)= 104, (A1)

at the moment of the time when reheating begins. It is

very large compared with unity. On the other hand, the

time behavior of the vacuum energy density during the

matter-dominated era is somewhat different from that of

the radiation-dominated era. For this reason, we need to

rechoose the boundary time b for the case of the matter-

dominated era. For convenience, we choose b = te for

the problem of the matter-dominated era where te is the

matter-radiation equality time. It is possible to calculate

mt at te by making use of Eq. (46) owing to the fact that

the boundary condition at tr is known. However, at this

stage, since we would like to merely prove Eq. (36), let

us use the previously known data at te. If we refer to the

figure of page 73 of Ref. [36], the matter-radiation equal-

ity time is te ' 1011 s and the energy scale at that time

is 9×10−9 GeV. Thus, under these choices as a boundary

condition, we have

mt ' (9×10−9 GeV)(1.5×1035 GeV−1)

= 1.4×1027, (A2)

at the moment of the matter-radiation equality time. This

is also extremely larger than unity. Moreover, the size of

mt increases as time goes by since m is constant once

it is determined in each era according to the boundary

condition. We therefore can readily conclude that

mt� 1, (A3)

at least in the region t> tr.
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