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Mott-Hubbard transition of bosons in optical lattices

with two-body interactions
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Abstract: In this paper, based on the Bose-Hubbard model with two-body on-site interactions, we study

the quantum phase transition between the superfluid state and the Mott-insulator state. With the decoupling

approximation, we get the relation between the weak superfluidity and dimensionless chemical potential with

different particle number and different dimensionless interaction strength, and the relation between the weak

superfluidity and the reciprocal of dimensionless interaction strength with different particle number. We also

calculate the corresponding experimental parameters.
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1 Introduction

Using the interference pattern of intersecting laser

beams, one can create a periodic potential for atoms,

which is known as an optical lattice [1, 2]. The op-

tical lattice - initially from a cooling experiment on

atoms - can now be widely used to confine ultracold

atoms [3–8]. Impressive developments in the manipu-

lation of ultracold atoms [Bose-Einstein condensates

(BEC)] in optical lattices provide one of the best en-

vironments for the search for exotic quantum phases

[9, 10], and an example of quantum phase transition is

the Mott-insulator-superfluid transition [11–16]. The

Bose-Hubbard model is introduced as the starting

point of the theoretical studies, which can well de-

scribe the behavior of the BEC in the optical lattices

[17–20].

Strongly correlated systems studied in condensed

matter physics or in atomic physics are usually dom-

inated by two-body interactions. However, it has

been an intriguing question of pursuing some exotic

phases associated with Hamiltonians with three- or

more-body terms [21], while the two-body term can

be tuned as external fields. This may lead to some

interesting quantum phases when generalized to more

complicated situations.

This paper is organized as follows. In Sec. 2, us-

ing the single bind approximation, we derive the

Bose-Hubbard model for atoms in an optical lattice

with two-body repulsive interaction. In Sec. 3, apply-

ing the decoupling approximation developed in Ref.

[22, 23], we derive an effective on-site Hamiltonian in

the strong-coupling limit. We also calculate the en-

ergy of this Hamiltonian applying perturbation the-

ory and discuss the decoupling-Landau order param-

eter expansion. In Sec. 4, we calculate some experi-

mental parameters and suggest some practical ways

to confirm our results. In Sec. 5, we summarize our

results.

2 The mode

The ultracold atoms interact through s-wave scat-

tering in the general case. Then the Hamiltonian of

the system reads [24]

Ĥ =

∫
drΨ̂ †(r)

[

p2

2m
+Vext(r)−µ

]

Ψ̂(r)

+
c

2

∫
drΨ̂ †(r)Ψ̂ †(r)Ψ̂(r)Ψ̂(r), (1)

where Ψ̂(r) is the boson field operator, c=
4π~

2as
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the interaction strength with as the s-wave scatter-

ing length, µ the chemical potential introduced here

to keep the conservation of the number of atoms in

the grand-canonical ensemble, Vext(r) the trapping

potential often expressed as follows in the case of an

optical lattice,

Vext(r) =
∑

d=x,y,z

V opt
d sin2(πxd/Ld), (2)

where Ld is the width of the lattice in the d-th direc-

tion with d running over the dimensions of the lat-

tice, and Ld =λ/2 for the lattices created by counter-

propagating laser beams of wavelength λ, V opt
d is the

depth of the lattice potential, which depends on the

strength of the laser light.

For a single atom in the periodic potential, the

energy eigenstates are Bloch states. Appropriate su-

perposition of the Bloch states can produce a set of

Wannier functions ωi(r), and in the limit of tight-

banding, ωi(r) is well localized in the ith lattice site.

So it is convenient to apply the Wannier description.

In the single bind approximation, the field oper-

ator Ψ̂(r) can be replaced by its single-mode expan-

sion,

Ψ̂(r) =
∑

i

ωi(r)b̂i, (3)

and Eq. (1) reduces to the Bose-Hubbard model,

Ĥ =−J
∑

〈i,j〉

b̂†i b̂j +
1

2
U

∑

i

b̂†i b̂
†
i b̂ib̂i−µ

∑

i

b̂†i b̂i, (4)

where 〈i, j〉 sums for all of the sets of nearest neigh-

bor sites, and b̂†i and b̂i are the bosonic creation and

destruction operators for the atom at site i. J is

the hopping matrix element between the neighboring

sites i and j, defined as

J =−
∫
drωi(r)

[

p2

2m
+Vext(r)

]

ωj(r), (5)

the parameter U is the two-body repulsive interaction

strength between bosons on the lattice site i, defined

as

U = c

∫
dr|ωi(r)|4. (6)

The density operator on the site i is n̂i = b̂†i b̂i, and

[b̂i, b̂
†
j ] = δij . Therefore, Eq. (4) can be rewritten as

Ĥ =−J
∑

〈i,j〉

b̂†i b̂j +
1

2
U

∑

i

n̂i(n̂i−1)−µ
∑

i

n̂i. (7)

3 Decoupling approximation

In order to study the SF-MI transition, we use the

decoupling approximation as follows,

b̂†i b̂j = (b̂†i −〈b̂†i 〉)(b̂j −〈b̂j〉)+〈b̂†i 〉b̂j

+b̂†i 〈b̂j〉−〈b̂†i 〉〈b̂j〉. (8)

Ignoring the second order fluctuation, this can be re-

duced to

b̂†i b̂j ∼〈b̂†i 〉b̂j + b̂†i 〈b̂j〉−〈b̂†i 〉〈b̂j〉, (9)

As we look forward to the superfluid phase, in the

strong-coupling limit, t � Umin. Therefore, the in-

troduction of the superfluid order parameter is very

convenient,

ψ=
√

n̂i = 〈b̂†i 〉= 〈b̂i〉, (10)

and the hopping term in Eq. (7) can be rewritten as

b̂†i b̂j ∼ψ(b̂†i + b̂j)−ψ2. (11)

Then Eq. (7) becomes the effective Hamiltonian,

Ĥeff = −zJ
∑

i

(b̂†i + b̂i)+zJψ
2Ns

+
1

2
U

∑

i

n̂i(n̂i−1)−µ
∑

i

n̂i, (12)

where z is the coordination number of a D-

dimensional optical lattice (z = 2D), and Ns is the

total number of the lattice sites. With regard to the

site index i, this Hamiltonian is diagonal. If we in-

troduce U = U/zJ and µ = µ/zJ , Eq. (12) can be

rewritten as

Ĥeff
i =

U

2
n̂i(n̂i−1)−µn̂i +ψ

2−ψ(b̂†i + b̂i), (13)

where U is the dimensionless interaction strength and

µ is the dimensionless chemical potential. This on-

site Hamiltonian is effective on every site i, so we

will drop the index i in the follow discussions.

3.1 Perturbation theory

In this section, we use perturbation theory to cal-

culate the energy of Eq. (13) in the strong-coupling

regime. To achieve this, we will treat the last term in

Eq. (13) as a perturbation −ψ(b̂†i + b̂i) = −ψV̂ with

V̂ = −(b̂†i + b̂i) the perturbation term. We separate

Eq. (13) in two parts,

Ĥeff = Ĥ(o) +ψV̂ , (14)

with the unperturbed Hamiltonian Ĥ(o) =
U

2
n̂(n̂−

1)−µn̂+ψ2. The corresponding ground-state energy

is

E(0)
g = {E(0)

n |n=0,1,2,···}min =
U

2
g(g−1)−µg, (15)
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where E(0)
n means the unperturbed energy of states

with integer fillings, and g is an integer specifying

the average number of particles on a lattice site.

In the occupation number basis, the odd powers of

the extension of Eq. (14) with regard to ψ disappear.

Hence, we only calculate the second- and fourth-order

corrections to the ground-state energy,

E(2)
g =

∑

n6=g

|〈n|V̂ |g〉|2

E(0)
g −E(0)

n

=
∑

n=g+1

|〈n|b̂†i |g〉|2

E(0)
g −E(0)

n

ψ2

+
∑

n=g−1

|〈n|b̂i|g〉|2
E(0)

g −E(0)
n

ψ2 = a2ψ
2, (16)

with

a2 =
g+1

µ−gU
+

g

(g−1)U−µ
, (17)

and

E(4)
g =

∑

n,p,q 6=g

|〈n|V̂ |g〉|
[

−E(2)
g

|〈n|V̂ |g〉|
(E(0)

g −E(0)
n )2

+
|〈n|V̂ |p〉
E(0)

g −E(0)
n

|〈p|V̂ |q〉
E(0)

g −E(0)
p

|〈q|V̂ |g〉
E(0)

g −E(0)
q

]

= a4ψ
4, (18)

with

a4 =
g

[(g−1)U−µ]2
· g−1

[(2g−3)U−2µ]

+
g+1

(µ−gU)2
· g+2

[2µ−(2g+1)U ]

−
[

g+1

µ−gU
+

g

(g−1)U−µ

]

·
{

g+1

(µ−gU)2

+
g

[(g−1)U−µ]2

}

, (19)

and here, |n〉, |p〉, |q〉 mean the unperturbed states

with n, p and q particles.

3.2 Decoupling-Landau order parameter ex-

pansion

In Section 3.1, we have calculated the second-

and fourth-order corrections to the ground-state en-

ergy, so the ground-state energy modified by adding

the second- and fourth-order corrections becomes

Eg(ψ) = E(0)
g +E(2)

g +E(4)
g . Applying perturbation

theory, we find that Eg(ψ) has the structure as an

expansion in ψ,

Eg(ψ) = a0(g,U,µ)+[1+a2(g,U,µ)]ψ2

+a4(g,U,µ)ψ4, (20)

where a2 can be either positive or negative, but a4

is always positive, meaning that the SMQPT is the

second order. For given particle number g, we obtain

the weak superfludity,

ψ2 =−1+a2

2a4

. (21)

Here, we would like to make a remark on our

decoupling-Landau expansion proposal, originally in-

troduced in Refs. [22, 23]. From Eq. (21), we get the

relation between ψ2 and µ̄ with different g and dif-

ferent Ū , and the relation between ψ2 and Ū−1 with

different g.

As shown in Fig. 1, Fig. 2 and Fig. 3, for the cases

of the same particle number, the stronger the dimen-

sionless interaction strength is, the larger the ampli-

tude of superfluidity will be. When the dimensionless

chemical potential reaches its maximum, ψ2 disap-

pears. So no matter how the dimensionless chemical

potential increases, ψ2 will not occur again. And the

stronger the dimensionless interaction strength is, the

larger the dimensionless chemical potential reaches its

maximum will be.

Fig. 1. g=1, with fixed Ū at Ū = 1, Ū = 2 and

varying µ̄. The black line denotes Ū = 1, and

the dashed line denotes Ū =2.

Fig. 2. g=1, with fixed Ū at Ū = 3, Ū = 4 and

varying µ̄. The black line denotes Ū = 3, and

the dashed line denotes Ū =4.
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Fig. 3. g=2, with fixed Ū at Ū = 2, Ū = 3 and

varying µ̄. The black line denotes Ū = 2, and

the dashed line denotes Ū = 3.

As shown in Fig. 4, in the case of the same dimen-

sionless interaction strength, the amplitude of super-

fluidity of g=2 is larger than that of g=1. And when

ψ2 vanishes, the dimensionless chemical potential of

the critical point in the case of g=2 is larger than that

of g=1.

Fig. 4. Ū = 4, with fixed g at g=1, g=2 and

varying µ̄. The black line denotes g=1, and

the dashed line denotes g=2.

Fig. 5. µ̄ =(g−1/2)Ū , with fixed g at g=1, g=2

and varying Ū−1. The black line denotes g=1,

and the dashed line denotes g=2.

As shown in Fig. 5, ψ2 tends to decrease towards

zero as the dimensionless interaction strength de-

creases. And ψ2 decreases faster in the case of g=2

than that of g=1 as Ū decreases.

4 Calculation of experimental para-

meters

In the simplest case, three orthogonal, indepen-

dent standing laser fields with wavevector k produce

a separable 3-dimensional lattice potential,

V (x,y,z) = V0(sin
2 kx+sin2 ky+sin2 kz)

≈ V0k
2(x2 +y2 +z2), (22)

where k = 2π/λ is the wave vector of the laser light

and V0 the maximum depth of the lattice potential.

In a deep optical with V0 �Er =
~

2k2

2m
, and Er is the

recoil energy. The Wannier function at the lowest

band in the well can be approximated as a Gaussian

ground state,

ω(r) =

(

α2

π

)3/4

exp

(

−1

2
α2

r
2

)

, (23)

where

α=

(

2mV0k
2

~2

)1/4

is the characteristic of harmonic oscillators. Thus,

Eq. (5) and Eq. (6) can be rewritten as

J =
2√
π

Er

(

V0

Er

)3/4

exp

[

−2

(

V0

Er

)1/2
]

, (24)

U =

√

8

π

kasEr

(

V0

Er

)3/4

. (25)

Therefore, the dimensionless interaction strength U

is

U =
√

2kas exp

[

2

(

V0

Er

)1/2
]

. (26)

As we can see, in this section, the strength of two-

body interaction is strong, which means that three-

body effects can hardly be observed. This is con-

sistent with the recent experiments [25] where the

manipulation of two-body dimensionless interactions

U is achieved by adjusting the depth of the optical

potential V0.
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5 Conclusion

In conclusion, the superfluid-insulator transition

with two-body interactions between optically trapped

ultracold bosonic atoms is discussed. For the cases of

the same particle number, the stronger the dimen-

sionless interaction strength is, the larger the ampli-

tude of superfluidity will be and the larger the di-

mensionless chemical potential reaching its maximum

will be. When the dimensionless chemical potential

reaches its maximum, the superfluidity disappears.

And no matter how the dimensionless chemical poten-

tial increases, the superfluidity will not occur again.

The phenomena are the same for the cases of the

same dimensionless interaction strength with differ-

ent particle number. In addition, the weak superflu-

idity tends to decrease towards zero as the dimension-

less interaction strength decreases.
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