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Branching fraction of the isospin violating

process φ → ωπ0 *
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Abstract: We have examined the parametrization of the e+e− → ωπ0 cross section in the vicinity of the

φ resonance and the extraction of the branching fraction of the isospin violating process φ → ωπ0 from

experimental data. We found that there are two possible solutions of the branching fraction: one is 4×10−5,

and the other is 7×10−3. The latter is two orders of magnitude higher than the former, which is the commonly

accepted one.
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1 Introduction

As has been pointed out in a recent study [1, 2],

there are many cases where multiple solutions are

found in fitting one dimensional distribution with the

coherent sum of several amplitudes and free relative

phase between them. The fit to the e+e− →ωπ0 cross

sections in the vicinity of the φ resonance was shown

as an example of the existence of the two solutions

and how large the difference could be between them.

However, Ref. [1] found these two solutions only

through a fit to the experimental data, which raises

suspicion that the two solutions may be due to the

statistical fluctuation, other reasons associated with

the data handling or fitting procedure, or something

else. In this brief report, we show mathematically

that two solutions exist in the parametrization of the

cross section used in the original publication [3]; and

the second solution can be obtained analytically from

the solution reported in the literature without carry-

ing out a fit to the experimental data.

2 Deriving the second solution

The cross section of e+e− →ωπ0 as a function of

the center-of-mass energy,
√

s, is parameterized as
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s) = σnr(
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∣
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in Ref. [3], where σnr(
√

s) = σ0 +σ′(
√

s−Mφ) is the

bare cross section for the non-resonant process, pa-

rameterized as a linear function of
√

s; Mφ, Γφ, and

Dφ = M 2
φ − s− iMφΓφ are the mass, the width, and

the inverse propagator of the φ meson, respectively.

Here, Z is a complex number that depicts the inter-

ference effect. Conventionally, the real and imaginary

parts of Z are denoted as <(Z) and =(Z), respec-

tively.

If we write

G(s,Z) = 1−Z
MφΓφ

Dφ(
√

s)
, (2)

then in the complex-parameter space (denoted by a

complex number Z ′), we want to figure out all possi-

ble parameters that can satisfy the following relation,

|G(s,Z)|2 = |G(s,Z ′)|2 . (3)

Note that if the above relation is to be true for any

s, it should be true for some special values of s. If we

firstly take a special value of s that satisfies M 2
φ−s = 0,

then we obtain

|1− iZ|2 = |1− iZ ′|2, (4)

or

|Z|2 +2=(Z) = |Z ′|2 +2=(Z ′). (5)

Secondly, we take another special value of s that
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satisfies M 2
φ−s = MφΓφ, and we obtain
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or

|Z|2−2<(Z)+2=(Z) = |Z ′|2−2<(Z ′)+2=(Z ′). (7)

Subtraction of Eq. (5) from Eq. (7) yields

<(Z ′) =<(Z). (8)

With this equality, Eq. (5) is recast as

[1+=(Z ′)]2 = [1+=(Z)]2, (9)

by virtue of which one gets either =(Z ′) = =(Z) or

=(Z ′) =−2−=(Z). As a summary, we have two sets

of solutions,

<(Z ′) =<(Z), =(Z ′) ==(Z); (10)

and

<(Z ′) =<(Z), =(Z ′) =−2−=(Z). (11)

We are ready to check that the above two sets of solu-

tions are true for the relation (3) for any value of s1).

Obviously, the first set of solutions is trivial, which is

expected intuitively. However, the second set of so-

lutions is fairly interesting, and it is firstly obtained

analytically. The more interesting thing is that ac-

cording to the Eqs. (10) and (11), the second set of

solutions can be obtained from the first one. Both

solutions describe the experimental data identically

well and one cannot distinguish between them purely

from the experimental data. Therefore we conclude

that if the cross section of e+e− → ωπ0 as a func-

tion of the center-of-mass energy is parameterized as

Eq. (1), there must be two sets of solutions of the

interference parameter Z.

One remark on our mathematical analysis: more

generally we write G(s,Z) in the form G(s,Z) =

1 + ZF (s), with F (s) being a complex function de-

pending on s. Here the first question is under what

condition there will be two solutions for the require-

ment of Eq. (3). According to our further study, only

some special forms of function F (s) can guarantee

the existence of two distinctive solutions, and in these

cases, it can be proved that utilizing the method sug-

gested here, we can get the other solution if one so-

lution is given.

3 Experimental confirmation

From Ref. [3], <(Z) = 0.106 and =(Z) = −0.103

are acquired from a fit to the experimental data in the

ω→π+π−π0 decay mode. In the light of Eq. (11), the

second set of solution can be acquired immediately,

i.e. <(Z) = 0.106 and =(Z) =−1.897.

It is interesting to compare these results with

those obtained from a fit to the experimental data [1].

A check of the fitted results given in Ref. [1] indicates

that the −1.90 is indeed from a rounding of −1.897.

Keeping one more digit, we find that the sum of the

imaginary parts is exactly −2. Both the real parts

and the imaginary parts agree perfectly between the

fitted results and the analytical evaluation.

4 Summary and discussions

We have shown above that there must be two solu-

tions in extracting the branching fraction of φ→ωπ0

with the parametrization of the e+e− → ωπ0 cross

section around the φ resonance in Ref. [3]. While the

first solution corresponds to B(φ→ωπ0) = 4×10−5,

as reported in Ref. [3], the second solution would be

B(φ→ωπ0) = 7×10−3, which is two orders of mag-

nitude higher than the first one.

One may need to check whether the parametriza-

tion of the cross section is meaningful or if there are

further constraints to the parametrization or the pa-

rameters, in order to pick out the physics solution

from the two-fold ambiguities.

It is worth pointing out that φ→ωπ0 is an isospin

violating process and thus should be small. The

branching fraction reported in Ref. [3] is already large

compared with theoretical calculations [4]. However,

if the physics is the second solution showed above, we

would find the theoretical calculations are too low.

References

1 YUAN C Z, MO X H, WANG P. arXiv:0911.4791 [hep-ph]

2 Bukin A D. arXiv:0710.5627 [hep-ph]

3 Ambrosino F et al. (KLOE collaboration). Phys. Lett. B,

2008, 669: 223

4 LI G, ZHANG Y J, ZHAO Q. J. Phys. G, 2009, 36: 085008

1) In fact, there is another equivalent method that can be used to get the same result without resorting to the special values

of s (private communication with Maurice Benayoun). By setting s−M2
φ

= uMφΓφ with u being a real variable, and substi-

tuting this relation into Eq. (3), one gets a quartic equation of u with the coefficients of function of <(Z), =(Z), <(Z ′), and

=(Z′). The requirement of coefficient of the same order of u being equal (so that the results do not depend on u) yields five

algebraic equations for <(Z), =(Z), <(Z ′), and =(Z′). Two independent and non-trivial equations of them are <(Z ′) =<(Z) and

[1+=(Z′)]2 = [1+=(Z)]2, which are just the results we obtained in Eqs. (8) and (9).


