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Isospin dependence of nuclear multifragmentation

in statistical model *
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Abstract: The evolution of nuclear disintegration mechanisms with increasing excitation energy, from com-

pound nucleus to multifragmentation, has been studied by using the Statistical Multifragmentation Model

(SMM) within a micro-canonical ensemble. We discuss the observable characteristics as functions of excitation

energy in multifragmentation, concentrating on the isospin dependence of the model in its decaying mechanism

and break-up fragment configuration by comparing the A0 = 200, Z0 = 78 and A0 = 200, Z0 =100 systems. The

calculations indicate that the neutron-rich system (Z0 =78) translates to a fission-like process from evaporation

later than the symmetric nucleus at a lower excitation energy, but gets a larger average multiplicity as the

excitation energy increases above 1.0 MeV/u.
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1 Introduction

Many models have been developed to describe the

breakup of a large nucleus subjected to excitation en-

ergies greater than a few MeV per nucleon, a pro-

cess known as nuclear multifragmentation [1–9]. This

phenomenon has drawn much attention because of

the possibility of observing a liquid-gas phase transi-

tion in nuclear matter [10–12]. Many approaches have

been proposed to describe different aspects of the nu-

clear multifragmentation process [13]. Among them,

the Statistical Multifragmentation Model (SMM) pre-

sented in Refs. [14–21], which is called the Copen-

hagen model, has been largely used for interpreting

experimental data about multiple fragment produc-

tion in different nuclear reactions [22–30].

Compared with the dynamical models, statistical

treatments do not describe the whole collision pro-

cess. Instead, it is the configuration of the system

after the most violent stages of the reaction that are

considered, from which one can predict the proper-

ties of the fragment production. In the framework of

the statistical model, as a result of the most violent

stages of the collision, the excited nuclear system is

assumed thermally equilibrated and breaks up simul-

taneously as it cools down. The different fragmen-

tation modes are weighed according to their statisti-

cal factors, which depend on the statistical ensemble

adopted [1, 9, 14], and all of the statistical approaches

are very successful in quantitatively describing many

features of nuclear multifragmentation [1, 23].

In this work, we compare the thermodynamic

quantities of different systems predicted by the SMM

based on its microcanonical versions [14–16], by con-

centrating on the isospin dependence of the model.

The calculation of physical observables, such as the

average multiplicity and temperature of the model as

a function of excitation energy, are discussed, and the

mass distributions at different excitation energies are

also demonstrated. In particular, the isospin effect on

the multifragmentation mechanism and the fragment

configuration are very well investigated.

In Sec. 2, we give a detailed framework of the

SMM within a microcanonical ensemble used in the
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calculations. The comparison among their predic-

tions is discussed in Sec. 3. We conclude in Sec. 4

with a brief summary of the multifragmentation pro-

cess and fragment configuration.

2 The statistical multifragmentation

model

In the SMM, the main physical picture is de-

scribed where a hot and compressed source is formed

at the late stages of the reaction. This excited source

then undergoes a simultaneous statistical breakup. In

this section, we present the microcanonical ensemble

versions of the model used in this work [14–16].

In the microcanonical version, each fragmentation

mode f of an excited source with mass and atomic

numbers A0 and Z0, respectively, must strictly be

consistent with the mass, charge and energy conserva-

tion, and thus the following constraints are imposed

for each partition,

A0 =
∑

A,Z

NA,ZA , (1)

Z0 =
∑

A,Z

NA,ZZ , (2)

and

−BA0,Z0
+E∗ =

3

5

Z2
0e2

R
+

∑

A,Z

NA,ZEA,Z(T ), (3)

where NA,Z represents, within a fragmentation mode

f, the multiplicity of a fragment with mass and atomic

numbers A and Z; BA0,Z0
stands for the binding en-

ergy of the source [31]; and E∗ represents its excita-

tion energy at temperature T. The total energy on

the right hand side of the equation is written as the

sum of the Coulomb energy and the contribution of

each fragment EA,Z(T ) [32]. The latter is calculated

using a liquid drop parametrization of the fragment’s

energy and has the following contributions [16],

EA,Z(T ) =−BA,Z +EK
A,Z(T )+E∗

A,Z(T )+EC
A,Z . (4)

The contributions to the fragment energy EA,Z(T )

on the right side of the the equation are the bind-

ing energy BA,Z , the translational motion EK
A,Z(T ),

the internal excitation energy E∗

A,Z(T ), and the re-

maining Coulomb terms EC
A,Z(V ), respectively. In all

of the calculations, we use the Liquid Drop formula

adopted in Ref. [16],

BA,Z = w0A−β0A
2/3−CC

Z2

A1/3

−Kasym

(A−2Z)2

A

/[

1+
9

4

Kasym

QasymA1/3

]

, (5)

EK
A,Z(T ) =

3

2
T , (6)

E∗

A,Z(T ) =
T 2

ε0

A+

(

β(T )−T
dβ

dT
−β0

)

A2/3 , (7)

β(T ) =

[

T 2
c −T 2

T 2
c +T 2

]5/4

, (8)

EC
A,Z = −CC

Z2

A1/3

(

V0

V

)1/3

. (9)

The parameters entering the above expression are

w0 = 16.0 MeV, β0 = 18.0 MeV, CC = 0.737 MeV,

Kasym = 30.0 MeV, and Qasym = 35.0 MeV, ε0 =

16.0 MeV, and Tc = 16.0 MeV is the critical tempera-

ture above which the surface contributions to the free

energy and entropy vanish [21, 32].

The following section is devoted to calculating

the free energy and entropy of the system composed

of fragments of different partitions. The statistical

weight ωf of a fragmentation mode is calculated

through the entropy,

ωf = exp(Sf ), (10)

where Sf stands for the entropy, which is obtained

from the sum of the contributions of each fragment

associated with the mode f . It is related to the total

energy and the Helmholtz free energy F through the

standard thermodynamic expression.

The mean value of any physical observable 〈O〉 is

obtained by weighing its value in each partition,

〈O〉=

∑

f
Ofωf

∑

f
ωf

. (11)

The entropy Sf is calculated through the standard

thermodynamical relation,

S =−
dF

dT
, (12)

where

F = E−TS (13)

is the Helmholtz free energy. For a fragmentation

mode, f can be written as

FA,Z =
∑

A,Z

NA,Z

[

−BA,Z +f∗

A,Z(T )+f trans
A,Z (T )

]

+FCoul,

(14)

where the contributions from the fragment’s transla-

tional motion f trans
A,Z and internal excitation f ∗

A,Z are

expressed as

f trans
A,Z =−T

[

lg

(

gA,ZVfA3/2

λ3
T

)

−
lg(NA,Z !)

NA,Z

]

. (15)



No. 6 ZHANG Lei et al: Isospin dependence of nuclear multifragmentation in statistical model 569

f∗

A,Z =−
T 2

ε0

A+β0A
2/3

[

(

T 2
c −T 2

T 2
c +T 2

)5/4

−1

]

. (16)

In the above expression,

λT =

√

2π~
2

mnAT

is the thermal wavelength, mn is the nucleon mass,

gA,Z is the spin degeneracy factor, and Vf denotes the

free volume. The quantity of binding energy BA,Z and

the remaining Coulomb terms FCoul are temperature

independent and therefore correspond, respectively,

to Eqs. (5) and (9).

In the formulation mentioned above, the total

mass and charge of all fragments are supposed to be

fixed by Eq. (1) and Eq. (2). These constraints are

very important while dealing with finite nuclear sys-

tems, when fragment multiplicities are not too large.

The energy conservation stated by Eq. (3) allows one

to determine the microcanonical temperature Tf for

each fragmentation mode f. Since it is very difficult

to compute all of the fragmentation modes of a heavy

source, the numerical procedure of generating the in-

dividual multifragmentation events was proposed on

the basis of the Monte Carlo method [1, 9, 16, 17].

The main strategy of the model simulation consists

of partitions within a certain multiplicity range, for

which the statistical weight is large.

3 Results and discussions

In this section, the SMM model described within

the microcanonical ensemble in the previous section is

now applied to study the breakup of different excited

nuclei systems. In order to investigate the isospin ef-

fect, we have calulated the A0 = 200, Z0 = 78 nucleus

compared with A0 = 200, Z0 = 100 system, of which

one is neutron rich nucleus and the other is a sym-

metric one. In this work, we keep the breakup volume

fixed for all fragmentation modes and parametrize it

through the expression Vχ = (1+χ)V0, where V0 de-

notes the volume of the system at normal density and

χ > 0 is an input parameter. We use χ = 2 in all the

calculations below.

First we consider the mean characteristics of a

multifragment system, such as the average tempera-

ture and multiplicity. The caloric curves of the sys-

tems are displayed in Fig. 1. The average temper-

ature as a function of the excitation energy shown

in Fig. 1 is obtained in the microcanonical ensemble.

The diomand-line is the average temperature curve

of A0 = 200, Z0 = 78 nucleus, while the circle-line

is the A0 = 200, Z0 = 100 system respectively. The

values of the average temperature are about 1.9 MeV

for the Z0 = 78 nucleus and 2.3 MeV for Z0 = 100 at

ε∗ = 0.5 MeV, and climb to 4.9 MeV at ε∗ = 5 MeV.

In both cases, the results clearly show that the tem-

perature increases monotonously and the existence of

a plateau in the caloric curve, which signals a liquid-

gas phase transition, as is well known [33–36], if the

breakup volume is kept fixed for all energies. We can

also see from the figure that the curves change very

little while the charge Z0 changes from 78 to 100,

which means that the temperature as a function of

the excitation energy is a very stable variable of the

multifragmentation model.

Fig. 1. The average temperature 〈T 〉 of frag-

ments versus the excitation energy in micro-

canonical calculation. The square-line is for

the nucleus with A0 = 200 and Z0 = 78 while

the circle-line for the A0 = 200,Z0 = 100 sys-

tem.

In order to investigate the qualitative differences

of the fragment multiplicity between the A0 = 200,

Z0 = 78 and A0 = 200, Z0 = 100 systems, we show

in Fig. 2 the average fragment multiplicity 〈M〉 as a

function of the excitation energy. We can see that

both curves increase monotonously with the growth

in excitation energy. At the critical certain excitation

energy ε∗ at about 0.2 MeV/nucleon the fragmenta-

tion process sets in (〈M〉 > 1). Then the number of

fragments grows rapidly and monotonously when the

excitation energy gets higher. At ε∗ > 5 MeV/nucleon

the multiplicity 〈M〉 exceeds 10. It is important to

note that when the excitation energy is lower than

1.0 MeV/u, the symmetric nucleus has larger mul-

tiplicity than the neutron-rich one, but drops down

when the calculated excitation energy is higher than

1.0 MeV/u. For instance, at ε∗=7 MeV, 〈M〉 is in-

creased by about 14.3% from 17.9 to 20.5, while the

charge Z0 = 100 changes to Z0 = 78. This clearly
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shows the isospin effect of the breakup fragment con-

figuration, which means that the excited neutron-rich

system (Z0 = 78) has larger average multiplicity 〈M〉

at the higher excitation energy, and intends to break

into more pieces with light nuclei.

Fig. 2. The average multiplicity 〈M〉 of frag-

ments versus the excitation energy for the two

A0 = 200 systems.

At lower excitation energies (ε∗ < 1.0 MeV/u), the

symmetric system’s average temperature grows faster

than the neutron-rich nucleus (shown in Fig. 1), and

its average multiplicity is larger (shown in Fig. 2),

which means an earlier beginning to the fragmenta-

tion process.

To further clarify the aspects discussed above, we

now investigate the mass distributions predicted for

the two different systems mentioned above. Fig. 3 and

Fig. 4 show the average multiplicities NA of fragments

with mass A resulting from the break-up production.

In Fig. 3, we can see that at lower excitation energy

(ε∗=0.5 MeV), the mass distribution of the Z0 = 78

system (solid-line) has a U-shape, which means that

the dominating decay mode is “quasi-evaporation”

(a break-up into a large residual nucleus and one or

two light clusters). However, as the isospin effect is

considered and we change the charge to Z0 = 100,

the mass distribution becomes a very different W-

shape, which has a large probability of around A0/2,

which means that the disintegration mechanism has

changed to “quasi-fission” (a break-up into two frag-

ments with nearly equal masses and one or two light

clusters). So we can say that the decaying mode of

the symmetric system switches to a fission-like pro-

cess from evaporation earlier than the neutron-rich

nucleus at a lower excitation energy.

The mass distribution curves at a higher excita-

tion energy ε∗ = 5 MeV/u are also plotted in Fig. 4.

We can see that they are both monotonically de-

creasing, and gradually approaching the exponential

shape, but the largest fragment nucleus mass num-

ber still reaches about A0/2, reflecting the liquid-gas

coexistence of the break-up products.

Fig. 3. The mass distributions of produced

fragments predicted by the microcanonical en-

semble at ε∗ = 0.5 MeV/u. The solid and

dashed lines are for the A0 = 200, Z0 =78 and

A0 = 200 and Z0 = 100 systems, respectively.

Fig. 4. The mass distributions of produced

fragments calculated at ε∗ =5 MeV/u.

One can notice that the symmetric system (Z0 =

100) has larger average multiplicities NA of fragments

in the medium-heavy nuclei range (A ≈ 10−40), while

the neutron-rich nucleus has a greater probability of

breaking up with more lighter clusters and heavier

residues, respectively, as discussed in Fig. 2.

4 Conclusion

In conclusion, the behavior of the nuclear caloric

curves is investigated based on the statistical multi-

fragmentation model within its micro-canonical en-

semble. The average multiplicity and temperature

sensitivities of the model as a function of excitation

energy are discussed, and the mass distributions at

two specific excitation energies (ε∗ = 0.5 MeV/u and
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ε∗ = 5 MeV/u) are demonstrated. We concentrate

on the isospin effect of the multifragmentation mech-

anism and the break-up fragment configuration by

comparing the A0 = 200, Z0 = 78 and A0 = 200,

Z0 = 100 systems. The calculations show that the

break-up mode of the neutron-rich nucleus (Z0 = 78)

switches to a fission-like process from evaporation

later than the symmetric system at lower excitation

energies (ε∗ < 1.0 MeV/u). While the excitation en-

ergy gets higher than 1.0 MeV/u, the neutron-rich

nucleus has a larger average multiplicity 〈M〉 than

the symmetric system at the same excitation energy,

and intends to break into more pieces with light nuclei

and heavier residues.
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