
CPC(HEP & NP), 2012, 36(1): 62–66 Chinese Physics C Vol. 36, No. 1, Jan., 2012

A data quality monitoring software framework

for the BES000 experiment *

HU Ji-Feng(�U¸)1;1) ZHENG Yang-Heng(x�ð)1

SUN Xiao-Dong(�¡À)2;2) JI Xiao-Bin(G¡R)2

1 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract: Data quality monitoring (DQM) plays an important role in data taking at the BES0 experiments.

DQM is used to monitor detector status and data quality. A DQM framework (DQMF) has been developed to

make it possible to reuse the BES0 offline reconstruction system in the online environment. In this framework,

the DQMF can also simulate a virtual data taking environment, transfer events to the event display, publish

histograms to a histogram presenter in a fixed interval, and dump histograms into a ROOT file. The DQMF

has been stably running throughout BES0 data taking.

Key words: BES0, DQM, BOSS, emulator

PACS: 29.40.Mc, 29.30.Hs DOI: 10.1088/1674-1137/36/1/010

1 Introduction

The upgraded BEPC/ is a multi-bunch and high

luminosity collider, which has achieved a peak lumi-

nosity of 5.9× 1032 cm2
· s−1. The BES0 detector

is the only general facility at BEPC/, and is de-

signed to fulfill the requirements of the physics [1]

and operate in the τ-charm energy region. Studies

of τ-charm physics could reveal or indicate the possi-

ble presence of new physics in the low energy region.

BEPCII/BES0 started operation in summer 2008,

and eight high-quality papers based on the collected

data have been published. Many other interesting

analyses, involved in light hadron spectroscopy, char-

monium physics and charm physics, have also been

carried out.

During BES0 data taking, events are assembled

in raw data format, and then flushed into persistent

storage in the online environment. These tasks are

done with the data acquisition system (DAQ) [2].

The DAQ also provides the hit-maps of sub-detectors.

However, these hit-maps are insufficient to monitor

data quality, so a better solution is to develop the

data quality monitoring system in the common soft-

ware framework, the data quality monitoring frame-

work (DQMF). The DQMF takes advantage of the

full offline reconstruction flow and physics analysis

algorithms to produce histograms, which are used to

monitor detector status and data quality.

Since the detector works at an event rate of about

4000 Hz, it is difficult to process every event in real-

time due to limited computing power. The DQMF is

required to process events as much as possible, and

to run stably and automatically during data taking.

The DQMF is also required to keep the two envi-

ronments compatible so that new developments and

updates of software packages can be added to the sys-

tem smoothly. To achieve the goals, the DQMF is

designed to process events in a sampling mode and

with a client/server (C/S) structure to separate the

two environments.

This letter focuses on the DQMF structure, the

key design points, the framework implementation and

other related issues.

Received 21 March 2011, Revised 19 April 2011

* Supported by Ministry of Science and Technology of China (2009CB8252000), Joint Funds of National Natural Science

Foundation of China (11079008), Chinese Academy of Science (CAS) Large-Scale Scientific Facility Program, 100 Talents Program

of CAS and Natural Science Foundation of China (10605030)

1)E-mail:hujifeng@gucas.ac.cn

2)E-mail: sunxd@ihep.ac.cn
©2012 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute

of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd



No. 1 HU Ji-Feng et al: A data quality monitoring software framework for the BES0 experiment 63

2 DQM framework design

As shown in Fig. 1, the DQMF consists of sev-

eral relatively independent components cooperating

to meet the requirements of DQM.

DQM servers and clients are the underlying com-

ponents, and they are designed with a C/S structure.

In this design the DQM server offers the raw format

events taken in real time, while DQM clients work in

a flow similar to the BES0 offline software system

(BOSS) [3]. In the flow the DQM clients receive the

raw events, invoke BOSS algorithms to reconstruct

the events, and invoke pre-defined physics algorithms

to analyze the events, then produce histograms to

show the detector performance. These histograms are

displayed to shift crew in realtime at the BES0 con-

trol room with corresponding reference histograms.

Beyond the realtime information, the DQMF dumps

the histograms into the ROOT [4] files run by run.

These monitored performance quantities, at both the

basic level and the high level, include the spatial reso-

lution of the main drift chamber (MDC) [5] wires, the

time resolution of the TOF [6] counters, the energy

resolution of the electro-magnetic calorimeter (EMC)

[7] cells, etc., and some kinematic variables.

Fig. 1. Overview of the DQM framework.

The distributed information manager (DIM) [8]

command server is used to automatically send the

DIM commands to drive the DQMF. The commands

are converted from detector states, which are syn-

chronized with the state machine of the DAQ.

In the DQMF four DIM commands, “BeginRun”,

“Run”, “EndRun” and “Wait”, are used to describe

a complete cycle of operation, which is defined as fol-

lows.

1) BeginRun: DQMF initializes each algorithm,

and the histograms of the last run are dumped to the

ROOT file.

2) Run: full-reconstruction algorithms and analy-

sis algorithms are invoked to produce histograms.

3) EndRun: some algorithms fetch histograms

from the histogram server for extra processing.

4) Wait: waiting for commands.

The histogram server is used to keep histograms,

which are produced by the offline reconstruction,

the physics analysis algorithms, and the histogram

merger. The histogram server is beyond the control of

DIM commands, and provides some useful histograms

to a GUI presenter.

The histogram merger aims to merge those his-

tograms from different DQM clients. The merger

only communicates with the histogram server, which

keeps histograms in an independent directory for each

client. This design separates the DQM clients from

each other. Any DQM client broken in connection

with the histogram server, doesn’t affect the others.

The merger fetches the histograms from each direc-

tory, and histograms with the same name are merged

into one histogram, which is published on the his-

togram sever. The merging flow is performed at a

fixed interval of 30 seconds. In addition, we have an

optional merging flow, which starts the merging flow

only if a new updated histogram is received, which

could reduce the computing costs.



64 Chinese Physics C (HEP & NP) Vol. 36

The ROOT FileSaver is responsible for dumping

histograms on the histogram server into a ROOT file

run by run. When receiving the state-signal “Be-

ginRun”, the dumping action starts, then resets the

histograms on the histogram server.

3 Implementation

The DQMF has been implemented in C++ lan-

guage based on the ATLAS [9] DQMF packages and

the offline environment. Each part is developed as an

independent module, and explained in the following

paragraphs.

3.1 Client/server communication

The C/S structure shown in Fig. 2 is adopted for

event exchange to separate the online environment

from the offline environment effectively, which suc-

cessfully overcomes many incompatibility problems

and avoids potential inconsistencies in upgrading the

software packages.

The DQM server could be regarded as an events

provider. It works in the online environment, uses raw

data as its input, and provides events continuously.

The DQM client is an event consumer. It works in the

offline environment, receives events from the DQM

server, and produces histograms as its output.

The DQM server is designed in object-oriented

programming, and implemented as a class. The com-

munication function between the DQM client and

server is based on the socket package. The function of

performing offline reconstruction and physics analy-

sis is implemented by encapsulating BOSS. A DQM-

Server.exe process is provided to offer raw events,

while 20-DQMClient.exe is used to process the events.

Fig. 2. DQM client/server structure.

The DQM server is in charge of sending continu-

ous events to each DQM client, and can stably run

without any extra operation from the shift crew. It

is implemented with multi-threaded programming.

Each thread processes a request from a DQM client,

and independently offers raw data events to the client.

This effectively improves the processing performance.

On the same ground, the DQM client is designed with

two parallel threads (a main thread and a branch

thread) and a shared queue.

Fig. 3. The data flow in the DQM client.



No. 1 HU Ji-Feng et al: A data quality monitoring software framework for the BES0 experiment 65

3.2 The client

The DQM client shown in Fig. 3, is designed to

perform full reconstruction and physics analyses to

check the data quality at different levels. An event

rate of greater than 40 Hz is required for process-

ing ability. The following strategies are applied to

achieve this goal. DQM clients are running on five

PCs (four cores/PC), and each DQM client is de-

signed with one event receiver thread, one analysis

thread and a shared queue.

The receiver thread of the DQM client is in charge

of receiving events from the DQM server via the es-

tablished TCP/IP connection. To enhance the ro-

bustness, an extra thread manager is introduced to

recover the broken connection. When the thread re-

ceives one event successfully, it immediately puts the

event into the shared queue. If the queue is full the

thread will trap, to wait until it is woken by the queue.

The queue of DQM client is used to store and buffer

the events.

The analysis thread of the DQM client is in charge

of performing the standard processing flow for an

event. When receiving the state-signal “BeginRun”,

the main thread is initialized. Once receiving the

state-signal “Run”, the main thread fetches one event

from the shared queue and invokes DQM algorithms

to process the event, as long as the queue is not

empty. If the queue is empty, the analysis thread

traps to wait until it is woken by the queue. On suc-

cessfully processing an event, the many histograms

defined in the different DQM algorithms can be up-

dated and published on the histogram server. The

DQM algorithms are standard BOSS algorithms, and

in BOSS environments they are easily added or re-

moved.

3.3 The other components

The DIM command server is developed based on

the DIM package, which provides a distributed en-

vironment. The DIM command server listens to the

state machine of data acquisition and translates the

states into four state-signals, which are sent to the

other parts of the DQMF. The DIM command server

runs in background mode during data taking.

The histogram merger is based on the ATLAS [9]

online packages, ROOT [4] and DIM command. It

takes advantage of the interface of the online package

to fetch specified histograms, and ROOT to put the

histograms together. It also uses the DIM command

“BeginRun” to coordinate with the ROOT FileSaver.

The merger also works in background mode.

The ROOT FileSaver is also based on the AT-

LAS online packages, ROOT and DIM command. It

uses the online software interface to fetch histograms,

ROOT to dump histograms, and the DIM command

to start the dumping action. The ROOT FileSaver is

implemented as a plugin of the histogram server.

4 Testing and operation

For development and testing, a DQM emulator

is designed to simulate a DQM server and the DIM

command server. The DQM emulator can load both

Monte Carlo and real data files, and send DIM com-

mands. It is a powerful tool to diagnose problems

during the development of the DQMF. Once taking

data, the emulator will be replaced with the DQM

server. Fig. 4 shows a diagram of the communication

between the emulator and a client.

Fig. 4. Communication between the emulator

and a DQM client.

The DQM emulator is developed in the online en-

vironment and implemented with a combination of

DIM command and DQM server. The emulator uses

the RawFileReader [10] interface to load raw files,

the TCP/IP socket to transfer event data, and the

DIM command to simulate the detector states. When

reaching the end of one raw file, the state signals “En-

dRun”, “BeginRun” and “Run” are sent successively

at an interval of several seconds.

Fig. 5. The deposited energy of Bhabha events

in the electromagnetic calorimeter.



66 Chinese Physics C (HEP & NP) Vol. 36

Here, we present two example histograms pro-

duced by the DQMF in real operation. Fig. 5 shows

the deposited energy of Bhabha events [11] in EMC,

and Fig. 6 shows the energy loss of charged parti-

cles (dE/dx [12]) in the MDC. The black (solid) his-

tograms, compared with the red (dashed) reference

histograms, show a normal EMC status (see Fig. 5)

and an abnormal MDC status (see Fig. 6), respec-

tively. The peak shift of dE/dx is caused by improper

calibration constants of MDC. Besides the above two

Fig. 6. The dE/dx of charged particles passing

through the main drift chamber.

illustrations, the DQM system also provides an abun-

dance of histograms for different sub-detectors.

5 Conclusion

The DQMF, which has been developed for the

BES0 experiment, provides a visual, straight and

quick solution for data quality assessment. DQMF

adopts the C/S structure,sampling mode and full-

reconstruction flow, etc, to achieve the experimental

requirements. The first released version of the DQM

framework has been available since September 2008,

and after several updates of the DQM framework

itself, more and more new physics algorithms were

gradually added to monitor the detector. The re-

leased version has been running stably, and the re-

sults produced by the DQM system indeed reflect the

changes in online and offline configuration in time,

and offer a reliable reference to the shift crew.

The authors gratefully acknowledge Tiao Haolai

for the contribution to the EventDisplay and Zou Ji-

aheng for the contribution to the RawFileReader.

References

1 Asner D M et al. (BES0 collaboration). International Jour-

nal of Modern Physics A, 2009, supp24(1): 24–25, 29

2 LI Fei et al. Online data processing and analyzing in BES0

DAQ in the 16th IEEE-NPSS Real Time Conference - Con-

ference Record, 2009. 458–460

3 LI Wei-Dong§LIU Huai-Min et al. The Offline Software

for the BES0 Experiment. Proceeding of CHEP06. 2006

4 ROOT, An Object Oriented Data Analysis Framework.

http://root.cern.ch/drupal/

5 JIA Lu-Kui, MAO Ze-Pu et al. Chinese Phys. C (HEP &

NP), 2010, 34(12): 1866–1873

6 HU Ji-Feng et al. HEP & NP, 2007, 31(10): 893–899 (in

Chinese)

7 HE Miao. Simulation, Reconstruction and Low Momentum

µ/π Identification of the BES0 EMC, in the XIV Interna-

tional Conference on Calorimetry in High Energy Physics,

2010

8 http://dim.web.cern.ch/dim/

9 Kolos S et al. A Software Framework for Data Quality Mon-

itoring in ATLAS. International Conference on Computing

in High Energy and Nuclear Physics (CHEP.07), 2008

10 ZOU Jia-Heng. Dissertation in Shan Dong University, 2009.

43 (in Chinese)

11 LIU Chun-Xiu. Energy Calibration of the EMC with

Bhabha Events at BES0 in the XIV Interenatial on

Calorimetry in High Energy Physics, 2010

12 CAO Xue-Xiang, LI Wei-Dong et al. Chinese Phys. C (HEP

& NP), 2010, 34(12): 1852–1859


