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Abstract: We present a modified version of quark mass scaling via considering the important one-gluon-

exchange interaction between quarks in the quark mass density-dependent model. The properties of strange

quark matter and the structure of strange stars are then studied with the new scaling and a self-consistent

thermodynamic treatment. It is found that the one-gluon-exchange effect lowers the system energy considerably,

makes the equation of state stiffer, and the sound velocity tends to the ultra-relativistic value faster, which

make the biggest value of the maximum mass of strange stars become as big as approximately 2 times the solar

mass, in accordance with the latest astronomical observations.
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1 Introduction

Strange quark matter (SQM) has long been a hot

topic in nuclear physics. Early in 1971, Bodmer sup-

posed that SQM might be the most stable quantum

state of hadronic matter [1]. Especially since Witten’s

conjecture in 1984 that SQM could be the true ground

state of quantum chromodynamics (QCD) at finite

baryon density [2, 3], many scientists have worked

on this subject and obtained many interesting results

[4–8].

Because SQM might be absolutely stable, people

believe that the so-called pulsars might be strange

stars. According to the theory of gravitation, a grav-

itational collapse may take place in the core of a mas-

sive star at the end of its evolutionary path. If the

mass of a star is 1.44 times the solar mass (M�), the

star’s gravitation will be strong enough to squeeze

electrons into protons, and the star could become a

neutron star (the previously so-called pulsar). In re-

cent years, many investigations show that some of

the young millisecond pulsars are most likely to be

strange stars rather than neutron stars [9] because

SQM could originate from a first-order hadron-quark

phase transition in the core of a massive star.

Presently, and perhaps in the foreseeable future, it

is difficult to work out QCD directly and strictly. At

the same time, the application of perturbative QCD

to a strong-coupling domain is obviously unreliable

while the lattice approach faces difficulties. There-

fore, one has to rely on phenomenological models in

studying the properties of quark matter and strange

stars.

There are many phenomenological models, such

as the MIT bag model, Nambu-Jona-Lasinio (NJL)

model, quasi-particle bag model, quark masses

density-dependent (QMDD) model, potential model,

etc. The MIT bag model is one of the most famous

models, and it has been used to investigate the prop-

erties of SQM by many authors [10].

Conventionally, the bag constant was assumed to

be density-independent, which can not be justified in

general. In chiral models, the bag constant should be

given as a function of the chiral condensate, and is

thus dependent on the density and/or temperature.

Recently, the medium effects on the surface tension

of strangelets was studied with an extended quasipar-

ticle approach [8].
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In recent years, the quark model with confinement

by the density dependence of quark masses (CDDM)

has been developed [11–19]. These kinds of models

can be traced back to the 1980s, when an inversely

linear scaling of quark masses was suggested [20] and

extended to include strange quarks [21]. The linear

scaling was derived from the bag conception, and thus

gave very similar results as those in the bag model if

the thermodynamic treatment was correct [22].

Based on the linear confinement interaction and

the in-medium chiral condensate, an inversely cubic-

root scaling was later derived at zero temperature [11]

and extended to finite temperature [15]. With the cu-

bic scaling and corrected thermodynamic treatment,

the properties of strangelets in both ordinary and

color-flavor-locked phase have been explored [23, 24].

At lower density, the confinement interaction is

dominant. With increasing density, however, the

perturbative interaction will become more and more

important. On application of the quark mass scal-

ing derivation procedure and the thermodynamic for-

mulas of Wen et al. (WZP model) [15], Modarres

and Gholizade calculated the thermodynamic prop-

erties of SQM in ordinary phase [25]. They intro-

duced the one-gluon-exchange interaction obtained

from the Fermi liquid picture. For the confinement,

however, they did not include it, or simply did the

same as in the bag model by adding a constant vac-

uum energy density. In this paper, therefore, we will

study the properties of SQM in the quark model con-

sidering both the linear confinement and the one-

gluon-exchange interactions. We find that the one-

gluon-exchange makes SQM more stable, and the

sound velocity approaches the ultra-relativistic value

faster, which leads to an acceptable maximum mass

of strange stars as large as about 2 times the solar

mass.

The present paper is arranged as follows. In Sec-

tion 2, we derive a new quark mass scaling which

considers both the linear confinement and the one-

gluon-exchange effect. Then in Section 3, we present

the thermodynamic formulas and study the equation

of state (EoS) of strange quark mass with the newly

derived quark mass scaling. And the obtained EoS is

applied to investigate the properties of strange stars

in Section 4. Section 5 is a short summary.

2 Quark mass scaling considering one-

gluon-exchange effect

In Fowler, Raha and Weiner’s original paper [20],

the density dependence of u and d quarks was given

as

mu/d =
B0

3nb

, (1)

where nb is the baryon number density, B0 is in-

terpreted as the vacuum bag constant. For strange

quarks, Chakrabarty et al. gave [21]

ms = ms0 +
B0

3nb

, (2)

with ms0 being the current mass of a s quark.

In order to let the model be able to describe phase

transition, Zhang et al. extended the quark mass scal-

ing to finite temperature with the ansatz [14]

mI =
B0

3nb

[

1−
(

T

Tc

)2
]

, (3)

where Tc is the critical temperature. But soon later,

they found this parametrization causes an unreason-

able result: the radius of a strangelet decreases with

increasing temperature. So they added a linear term

in temperature, then the parametrization becomes

[26]

mI =
B0

3nb

[

1−a

(

T

Tc

)

+b

(

T

Tc

)2]

. (4)

Based on the in-medium chiral condensates and

quark confinement, the following quark mass scaling

is derived [11],

mq = mq0 +
D

n1/3

b

(q = u,d,s), (5)

where D is a parameter determined by stability argu-

ments. Later, in order to describe phase transition,

the quark mass scaling expression (5) was extended

to finite temperature [15],

mq = mq0 +
D

n1/3

b

[

1− 8T

λTc

exp

(

−λ
Tc

T

)]

, (6)

in which Tc is also the critical temperature of phase

transition, and λ = LambertW(8).

The above scalings consider only the interaction

of confinement. They are, in principle, merely cor-

rect at lower density. With increasing density, the

perturbative interactions between quarks will become

more and more important. So in this paper, we con-

sider the one-gluon-exchange interaction which is the

first-order approximation of perturbative interactions

between quarks.

In terms of the QMDD model, the strong interac-

tion between quarks is included within the appropri-

ate variation of quark masses with density. We define

an equivalent mass of quark as

mq = mq0 +mI, (7)
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where mq0 is the quark current mass, and mI is the

interaction part. The interaction part of the quark

mass can be expressed as [11, 15]

mI =
〈HI〉

∑

q=u,d,s

[〈qq〉nb
−〈qq〉0]

, (8)

in which 〈HI〉 is the interacting part of the energy

density from interactions. It is linked to density nb

by [27]

〈HI〉= 3nbv(r), (9)

where

r =

(

2

πnb

)1/3

(10)

is the average distance between quarks at the den-

sity nb, v(r) is the quark-quark interaction. To in-

clude the perturbative interaction, we first consider

one-gluon-exchange interaction between quarks as the

first-order approximation, i.e., the inter-quark inter-

action is expressed as

v(r) = σr− 4

3

αs

r
, (11)

where σ is the string tension, αs is the running cou-

pling constant of QCD.

The relative quark condensate in Eq. (8) can be

expanded to a Taylor series. For the first order ap-

proximation, we have the model-independent result

〈qq〉nb

〈qq〉0
= 1− nb

ρ∗
, (12)

where

ρ∗ =
m2

π
f 2

π

σN

. (13)

Taking the pion mass mπ = 140 MeV, the pion decay

constant fπ = 93.3 MeV, and the pion-nucleon sigma

term σN = 45 MeV, we then have ρ∗ ≈ 3.79×106 MeV3.

Substituting (9)–(13) into (8), we get a new quark

mass scaling as

mI =
D

n1/3

b

−Cn1/3

b , (14)

where the first term stands for linear confinement

interaction, the second term presents the one-gluon-

exchange effect, and

D =
3(2/π)1/3σ0ρ

∗

−
∑

q

〈qq〉0
, (15)

C =
4(π/2)1/3αsρ

∗

−
∑

q

〈qq〉0
. (16)

One may find that the mI in Eq. (14) will fi-

nally go to zero and even become negative at some

extremely high density. This is caused by the diver-

gence in Eq. (11) at small distance. This can be elim-

inated by adding a damping factor, as has been done

in Ref. [28]. The concrete form of the damping fac-

tor should not matter because it influences only the

behavior of quark matter at extremely high densities

while in that case quark matter has the important

characteristic of asymptotic freedom.

Here we use another treatment approach. Sup-

pose the mI is zero at a specific value n0 which can

be determined by letting mI in Eq. (14) be zero, i.e.,

n0 =

(

D

C

)3/2

. (17)

If the density is less than n0, mI as given by Eq. (14).

If the density is larger than n0, the quark has merely

the corresponding current mass and does not change

further with the density. Normally, n0 is a very high

density.

3 Thermodynamic formulas and prop-

erties of strange quark matter

In the previous section, we have discussed quark

mass scaling. A self-consistent thermodynamic treat-

ment is also very important when quark masses are

density-dependent. There are many discussions in

the literature on thermodynamic treatment [12, 14,

15, 18, 19, 21, 22]. Because other treatments suffer

from the drawback that the lowest energy state does

not correspond to zero pressure, we use the thermo-

dynamic treatment in Refs. [12] and [15]. The full

thermodynamic consistency has been represented in

Ref. [19].

At zero temperature, the energy density and pres-

sure are expressed as

E =
∑

i

miniF (xi), (18)

P =
∑

i

minix
2
i G(xi)−

∑

i

minif(xi), (19)

where the auxiliary functions F (xi), G(xi) and f(xi)

are defined by

F (xi) ≡ 3

8x3
i

[

xi

√

x2
i +1(2x2

i +1)−arcsinh(xi)
]

,

(20)

G(xi) ≡ 1

8x5
i

[

xi

√

x2
i +1(2x2

i −3)+3arcsinh(xi)
]

,

(21)
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f(xi) ≡ − 3

2x3
i

nb

mi

dmi

dni

[

xi

√

x2
i +1−arcsinh(xi)

]

.

(22)

In the above three functions,

xi ≡
νi

mi

=

√

µ2
i −m2

i

mi

(23)

is the ratio of Fermi momentum to the corresponding

quark mass for particle type i (i=u, d, s, e), while

the hyperbolic function is given by arcsinh (x) ≡
ln(x+

√
x2 +1).

Following the previous authors [3], we assume the

SQM to be a Fermi gas mixture of u, d, s quarks

and electrons with chemical equilibrium maintained

by the weak-interaction processes: d(s)↔ u+e−+ν̄e,

u+d↔ u+s, and so on.

For a given baryon number density nb and total

electric charge density Q, the relationships between

chemical potentials and number densities of quarks

and electrons are determined by the following equa-

tions,

µd = µs ≡µ, (24)

µu +µe = µ, (25)

nb =
1

3
(nu +nd+ns), (26)

2

3
nu−

1

3
nd−

1

3
ns−ne = Q. (27)

Here, we consider only neutral SQM, so we take Q = 0

in Eq. (27).

The particle number density ni (i = u, d, s, e) can

be expressed as

ni =
gi

6π
2
(µ2

i −m2
i )

3/2, (28)

where gi is the degeneracy factor with the value 6 for

quarks and 2 for electrons.

The quark masses mu, md, and ms in the

above equations should be replaced by the density-

dependent expression in Eq. (7) with the interaction

part mI given by Eq. (14) in order to include the

one-gluon-exchange interaction between quarks. The

electron mass, me, is 0.511 MeV. Once nb is given,

the effective chemical potentials µi (i=u, d, s, e) can

be obtained by solving the equation group (24)–(27).

The number densities nu, nd, ns and ne can be easily

calculated, and then the energy density and pressure

are obtained from Eqs. (18)–(23).

The velocity of sound c represents one of the most

important properties of SQM, which is defined by

c =

√

∣

∣

∣

∣

dP

dE

∣

∣

∣

∣

. (29)

In the following calculations, due to the current

masses of u and d quarks being so small that their

value uncertainties are unimportant, we take the fixed

values mu0 = 5 MeV and md0 = 10 MeV. As for s

quarks, the value range is about 95± 25 MeV [29],

we adopt ms0 = 100 MeV. The range of D has been

discussed in detail before, such as in Refs. [12, 19].

In Ref. [19], D1/2 was found to be in the range

(156, 270) MeV. Here, we employ the values D1/2 =

160, 180 MeV.

Naturally, we mainly investigate the effect of one-

gluon-exchange as the first-level approximation of a

quark’s perturbative interaction in the present work.

To study the properties of SQM, we should further

determine the values of parameter C. Of course, it is

not arbitrary. The running coupling constant of QCD

with the correction of the analytic perturbation the-

ory in the case of one-loop order is [30]

αs(Q
2) =

1

β0

[

1

lg(Q2/Λ2)
+

Λ2

Λ2−Q2

]

, (30)

where β0 = (11− 2Nf/3)/4π, Nf is the number of

flavors. We take Λ = 300 MeV here. In this condi-

tion the αs value is in the range of (0,1.25). From

Eq. (16) we know that C value is in the range of (0,

0.918) when −∑

q
〈qq〉0 varies from 3×(300 MeV)3 to

3× (200 MeV)3. In this paper, we take C = 0.1, 0.6

as examples. To compare with the previous results,

we also give the results for taking C = 0.

Fig. 1. The energy per baryon vs baryon num-

ber density for different parameters. The zero

pressure points are exactly coincident with the

lowest energy state.
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In Fig. 1, we give the energy per baryon E/nb ver-

sus the baryon number density nb for the three pairs

of parameters.

It is found from the figure that SQM can be more

stable if the one-gluon-exchange effect is taken into

account. The points marked with solid points (‘•’)
are the zero pressure points where the pressure within

SQM is zero. Due to the density dependence of quark

masses, we have adopted the thermodynamic treat-

ment in Refs. [12, 15, 19], which ensures that the

zero pressure point is exactly coincident with the min-

imum energy per baryon.

In Fig. 2, we show the corresponding EoS of SQM

for diferent parameter sets, as in Fig. 1. One can see

that all of the three lines approach the free gas EoS

at high density as expected. To show the one-gluon-

exchange effect, we give also the curve for C = 0.

Obviously, the EoS becomes stiffer with increasing C

value for the same D value. Therefore, the one-gluon-

exchange interaction makes the EoS stiffer, which

means that it increases the maximum mass of strange

stars.

Fig. 2. The EoS of SQM for different param-

eter groups. All curves approach the altra-

relativistic case at higher density. The stiffer

EoS will correspond to a bigger maximum

mass of strange stars.

In Fig. 3, we plot the velocity of sound in SQM

versus the baryon density for the same groups of pa-

rameters. The velocity of sound asymptotically tends

to the ultra-relativistic value 1/
√

3, as has happened

in other models due to the asymptotic freedom. At

lower density, they are significantly different because

of the density-dependence of quark masses.

Fig. 3. The velocity of sound in SQM. The solid

asymptotical horizontal line is for the MIT

Bag model case, while the other three lines

are the results of the present model.

4 Properties of strange stars

Strange stars have been studied by many authors

with their obtained EoS. For example, different mod-

els [31, 32] have been used to investigate the possible

EoS of solid quark matter and to explain the stiffness

required by observed massive pulsars [33]. Recently,

the properties of strange stars have been researched

by adopting the QMDD model [34] where the quark

mass scaling is employed as mq = mq0 +D/nx
b for a

wide range values of x=1/10, 1/5, 1/3, 1, 2. Their

calculations show that the resulting maximum mass

always lies between 1.5M� and 1.8M� for all the

scalings chosen there. In this section, we study the

mass-radius relation of strange stars using the EoS

obtained in this paper, which includes the important

one-gluon-exchange effect.

As usual, we assume the strange star to be a spher-

ically symmetric object. Its stability is determined by

the Tolman-Oppenheimer-Volkov (TOV) equation

dP

dr
=−GmE

r2

(

1+
P

E

)(

1+
4πr3P

m

)(

1− 2Gm

r

)−1

,

(31)
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which is a general relativistic equilibrium equation

of an ideal spherically symmetric hydrostatic object

under the action of gravitational field. In Eq. (31),

m≡
∫ r

0

4πEr′2dr′, (32)

or

dm/dr = 4πr2E, (33)

and r is the distance from the core of the star to its

surface, G = 6.707×10−45 MeV−2 is the gravitational

constant, m = m(r) is the mass within the radius r,

E = E(r) is the local energy density and P = P (r) is

the local pressure at the distance r.

Fig. 4. The mass-radius relationship of strange

stars. The points marked with a circle (‘◦’)

represent the maximum acceptable masses.

For the bag model, B
1/4=150 MeV has been

used.

If the EoS

P = P (E) (34)

is given, then the structure of strange stars is ob-

tained by solving Eqs. (31), (32) or (33), and (34).

In the above section, we have presented the EoS of

the SQM with the one-gluon-exchange effect. For an

initial baryon number density, and accordingly an ini-

tial energy density and pressure, we can numerically

solve Eq. (31) with the aid of the auxiliary Eq. (32) or

(33). And then the mass and radius of strange stars

can be obtained.

With the above sets of parameters, we plot the

mass-radius relation in Fig. 4. The result for the bag

model with a bag constant B1/4 = 150 MeV has also

been plotted for comparison. The points marked with

a circle (‘◦’) stand for the largest acceptable masses

Mmax. The biggest value of the acceptable mass is

approximately 2 times the solar mass (the solid line).

For that case, the corresponding EoS is the stiffest

EoS as shown in Fig. 2. So our parametrization can

provide a strange star with maximum mass close to

2M� which is in accordance with the observed max-

imum mass [33]. We can find from the graph that

the strange stars in this model are dimensionally big-

ger and more massive than the result in Ref. [12] if

the important one-gluon-exchange effect is included

in the EoS of SQM.

5 Summary

We have presented a new version of quark mass

scaling in the QMDD model of SQM, and applied it

to the investigation of strange stars. With increas-

ing densities, the perturbative interaction between

quarks becomes more and more important, so we

have considered the one-gluon-exchange interaction

between quarks as a first-order approximation. It is

found that when one-gluon-exchange effect is consid-

ered, SQM can be more stable, and the velocity of

sound can tend to the ultra-relativistic value faster.

Our parametrization can lead to stable strange stars

with maximum mass as big as approximately 2 times

the solar mass, which is in accordance with the newly

observed maximum mass [35].

Naturally, the matter in a compact star can un-

dergo deconfinement phase transition from hadronic

matter to quark matter. Therefore, some compact

stars could in fact be a strange hadronic star with

a quark core. It is thus interesting to further study

the structure of hybrid stars with mixed phase in the

future.
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