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Analysis and simulation of a coupled-cavity
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Abstract: An equivalent circuit model is built for a coupled-resonator pulse compressor. Based on the

circuit, the general second order differential equation is derived and converted into the first order equation

to save computing time. In order to analyze the transient response and optimize parameters for the pulse

compressor, we have developed a simulation code. In addition, we have also designed a three-cavity pulse

compressor to get the maximum energy multiplication factor. The size of the cavities and coupling apertures

is determined by HFSS.
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1 Introduction

In the 1990s, the coupled-cavity pulse compressor

was first proposed by T. Shintake, who also fabricated

a cold model and got reasonable results [1, 2]. It can

produce a flatter output waveform than that of the

SLED (SLAC Energy Doubler). Although dispersion

distorts the waveform and gives rise to a significant

power variation in the compressed pulse, its physi-

cal length is much shorter than that of the SLED /.

Theoretical analysis and numerical simulation for a

coupled-cavity pulse compressor will be presented.

2 Transient analysis [3, 4]

The coupled-cavity pulse compressor is studied us-

ing the coupled-resonator model which has been suc-

cessfully applied to analyze the characteristics of the

accelerating structures. Fig. 1 shows the equivalent

circuit of the pulse compressor.

The characteristic impendence of the feeding

waveguide is normalized to 1. Each cavity is repre-

sented by a parallel resonant circuit. The coefficient

k describes the coupling between the two adjacent

cavities and β is the coupling between the feeding

waveguide and the first cavity. Based on the equiv-

alent circuit, the general differential equation can be

obtained as Eq. (1). Assuming that the voltages os-

cillate with a sinusoidal function at the frequency ω,

then Eq. (1) can be transformed into Eq. (2).
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Fig. 1. Equivalent circuit for the coupled-cavity pulse compressor.

If the amplitude of the excitation source varies

smoothly and the cavities have a high quality factor,

the second order equation can be approximated as

the first order equation.
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Eqs. (2) and (3) are solved for the three-cavity sys-

tem with Q factor of 190000. And the generator fre-

quency is 5.712 GHz, which is the same as the res-

onant frequency of cavities. The duration of the in-

put pulse is 2.5 µs and that of the output pulse is

0.35 µs. Fig. 2 shows the results of Eq. (2) solved by

the Runge-Kutta method and that of Eq. (3) solved

directly when the power gain is maximized. It shows

that the results are almost entirely consistent, that is

to say, the first-order approximation is reasonable.

Tables 1 and 2 show the optimum parameters of

uniform coupled-cavity systems with a Q factor of

190000 when the power gain and M are maximized,

respectively. Fig. 3 shows the normalized power gains

using the parameters in Table 1. Fig. 4 shows the

normalized voltages using the parameters in Table 2.

In this case, it can be concluded that the quantity

of the cavity has little effect on the maximum power

gain and energy multiplication factor, but the output

waveform is flatter with the increase of it.

Fig. 2. The output waveform of Eqs. (1) and

(2) when the power gain is maximized.

Table 1. The optimum parameters with maxi-

mum power gain.

quantity β k power gain efficiency(%)

3 20.6 0.0014 4.37 61

5 30.8 0.00205 4.36 61

7 41 0.00265 4.35 60.9

9 51.2 0.00325 4.35 60.9

Furthermore, with different Q factor and k, the

nonuniform three-cavity system is analyzed. Fig. 5

shows the parameters and output waveform when M
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Table 2. The optimum parameters with maxi-

mum multiplication factor.

quantity β k M

3 19.1 0.0013 2.037

5 29 0.00185 2.047

7 39.3 0.0025 2.054

9 49 0.003 2.057

Fig. 3. The output waveform of the normalized

power gain.

Fig. 4. The output waveform of the normalized

voltage.

Fig. 5. Output waveform of the nonuniform

three-cavity system.

is maximized to 2.06, and then the power gain is 4.33,

very close to the maximum value of 4.35.

3 Results of simulation by HFSS

Three-dimensional field calculations have been

carried out by HFSS to determine the size of coupling

apertures and cavities. The relation between k and

frequency in a dual-cavity system can be expressed

as [5]
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where f1 and f2 are the eigenmode frequency of the

dual-cavity system, f01 and f02 are the frequency of

the two single-cavity. We split the three-cavity sys-

tem into two dual-cavity systems to get k12 and k23,

respectively. Tables 3 and 4 show the simulation re-

sults of the coupling coefficients.

The steady-state equation of the coupled-

resonator modal can be obtained by Fourier trans-

form of Eq. (1). Analyzing steadythe -state response

of the three-cavity system, we get three eigenmodes:

0, π/2 and π modes. Their frequencies can be ex-

pressed as:
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The π/2 mode is chosen as the operating mode for

its stabilization, which can relax the requirements for

machining tolerances. Figs. 6, 7 and 8 show the mag-

netic field pattern of 0, π/2 and π modes of the three-

cavity pulse compressor. Fig. 9 shows the detailed

size of the pulse compressor.

Theoretically there are three ways to verify the

reliability and accuracy of the simulation results.

First of all, we compare the frequency of the three

eigenmodes simulated by HFSS with that solved by

Eq. (5). The results are showed in Table 5. Secondly,

we can compare f02 obtained by HFSS with that cal-

culated with Eq. (6). Lastly, we compute the ratio of

stored energy in the first and third cavities by HFSS

which is equal to the square of the ratio of k23 and k12.

The results of simulation and theoretical calculation

are consistent.
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Table 3. The simulation results of k12.

1st cavity frequency 2nd cavity frequency 0 mode frequency π mode frequency k12

5712.02 MHz 5712.06 MHz 5709.88 MHz 5714.18 MHz 0.0015

Table 4. The simulation results of k23.

2nd cavity frequency 3th cavity frequency 0 mode frequency π mode frequency k23

5712.06 MHz 5711.98 MHz 5710.6 MHz 5713.48 MHz 0.001

Table 5. The frequency of 0, π/2 and π modes.

mode 0 Mode π/2 mode π mode

frequency by HFSS 5709.46 MHz 5712.03 MHz 571463 MHz

frequency by Eq. (5) 5709.46 MHz 5.712.03 GHz 5714.61 MHz

Fig. 6. The magnetic field pattern of 0 mode.

Fig. 7. The magnetic field pattern of π/2 mode.

Fig. 8. The magnetic field pattern of π mode.

Fig. 9. The size of coupling aperture and cavities.

4 Conclusion

We have described the complete theoretical anal-

ysis of the coupled-cavity pulse compressor and op-

timize the parameters under different conditions. In

addition, we have designed a coupled-cavity RF pulse

compressor similar to that proposed by T. Shitake

and simulated it by HFSS. The cavity size is deter-

mined in the case of the eigenmode. After the intro-

duction of the input coupler, just fine-tuning for the

input cavity size is needed. The results can be used as

a useful reference for future design and manufacture.
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