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Interferometry imaging for the evolving source in

heavy ion collisions at HIRFL-CSR energy *
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Abstract: Imaging analysis of two-pion interferometry is performed for an evolving particle-emitting source in

heavy ion collisions at HIRFL-CSR energy. The source evolution is described by the relativistic hydrodynamics

in (2+1) dimensions. The model-independent characteristic quantities of the source are investigated and

compared with the interferometry results obtained by the usual Gaussian formula fit. It is found that the first-

order source function moments can describe the source sizes. The ratio of the normalized standard deviation

σ̃ to the first-order moment R̃, σ̃/R̃, is sensitive to the shape of the source function.

Key words: interferometry, imaging, evolving sources, heavy ion collisions, HIRFL-CSR energy

PACS: 25.75.-q, 25.75.Gz DOI: 10.1088/1674-1137/36/3/005

1 Introduction

The Cooling Storage Ring (CSR) is an acceler-

ator at the Heavy Ion Research Facility in Lanzhou

(HIRFL). The bombarding energy of the HIRFL-CSR

for heavy ion collisions will reach about 1 GeV. At

this energy nuclei are fully stopped in the center-of-

mass frame of the nuclear system in central collisions,

and baryon densities may reach 2–3 times normal nu-

clear matter density (∼0.17 fm−3).

In Ref. [1], the interferometry technique of quan-

tum transport of interfering pair (QTIP) [2] is used

for the spherical pion-emitting source in the colli-

sions at HIRFL-CSR energy. However, more realistic

sources in the collisions are anisotropic in longitudinal

(beam direction) and transverse directions. A cylin-

dric source along the beam direction is a more general

case. In Ref. [3], the three-dimension source char-

acteristic quantities R̃out, R̃side, and R̃long obtained

by an interferometry imaging technique are investi-

gated for granular sources in relativistic heavy ion

collisions. In this work we perform imaging anal-

ysis for the cylindric evolving sources in heavy ion

collisions at the HIRFL-CSR energy. We investi-

gate the source characteristic quantities obtained by

the imaging analysis and the interferometry results

obtained by the usual Gaussian formula fit for the

evolving source. The results indicate that the first-

order source moments R̃out, R̃side, and R̃long can de-

scribe the source sizes, and the zero-order moment λ̃

may provide information on the chaotic degree of the

source. Unlike the interferometry results obtained by

the usual Gaussian formula fit, the results of the mo-

ments are model independent. The ratio of the nor-

malized standard deviation to the first-order moment

is sensitive to the shape of the source function. Its

results are larger than unity for the source function

with a non-Gaussian distribution.

2 (2+1) dimension evolving sources

2.1 Relativistic hydrodynamic equations in

cylindric frame

Relativistic hydrodynamics has been extensively

applied to high energy heavy ion collisions [4–7]. In

this work we use the relativistic hydrodynamics in

(2+1) dimensions to describe the source evolution.
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The dynamics of an ideal fluid in high energy heavy

ion collisions is defined by the local conservations

of energy-momentum and net charges [4–6]. The

continuity equations of the conservations of energy-

momentum, net baryon number, and entropy are

∂µ T µν(x) = 0 , (1)

∂µ jµ

b (x) = 0 , (2)

∂µ jµ
s (x) = 0 , (3)

where x is the space-time coordinate of a thermal-

ized fluid element in the source center-of-mass frame,

T µν(x) is the energy momentum tensor of the ele-

ment, jµ

b (x) = nb(x)uµ and jµ
s (x) = s(x)uµ are the

four-current-density of baryon and entropy, (nb and

s are the baryon density and entropy density), and

uµ = γ(1,v) is the four-velocity of the fluid element.

The energy momentum tensor T µν(x) is given by [4–

6]

T µν(x) =
[
ε(x)+P (x)

]
uµ(x)uν(x)−P (x)gµν , (4)

where P and ε are the pressure and energy density of

the fluid element, and gµν is the metric tensor.

In the cylindrical coordinate (t,ρ,φ,z) frame,

gµν= diag (1, −1, −ρ−2, −1). The conservation

Eqs. (1)–(3) can be expressed as

∂t E+∂ρ[(E+P )vρ]+∂z[(E+P )vz] =−vρ

ρ
(E+P ), (5)

∂t M
ρ +∂ρ(M

ρvρ +P )+∂z(M
ρvz) =−vρ

ρ
Mρ, (6)

∂t M
z +∂ρ(M

zvρ)+∂z(M
zvz +P ) =−vρ

ρ
M z, (7)

∂t Nb+∂ρ(Nbv
ρ)+∂z(Nbv

z) =−vρ

ρ
Nb, (8)

∂t Ns +∂ρ(Nsv
ρ)+∂z(Nsv

z) =−vρ

ρ
Ns, (9)

where E ≡ T 00, Mρ ≡ T 0ρ = T ρ0, M z ≡ T 0z = T z0,

Nb ≡ j0
b = nbγ, Ns ≡ j0

s = sγ. Eqs. (5)–(9) are the

equations of motion in our model.

2.2 Equation of state and the initial condi-

tion

In the equations of motion (5)–(9), there are ε,

P , vρ, vz, nb, and s six unknown functions. In order

to obtain the solution of the equations of motion, we

need an equation of state (EOS), P (ε, nb, s), which

gives a relation for P , ε, nb, and s. Also, the initial

conditions of the source system are needed for the

solution. At the HIRFL-CSR energy the particle-

emitting source is a system of mixed hadronic gas

with finite baryon density. In our model, we use

a mixed perfect gas of (N, π, K) (stable particles)

and ∆(1232) (excited-state particles) to describe the

hadronic gas source as in Refs. [1, 2]. We assume

that the initial source is distributed uniformly in a

cylinder along the z axis (in beam direction) between

(−z0,z0) and with a transverse radius ρ0. The ini-

tial source has a constant baryon chemical potential

µb0 (or density nb0) and zero velocity because of the

fully stopped collisions. We assume that the final

pion production satisfies the partial chemical equi-

librium (PCE) condition [1, 2, 8, 9], which includes

the direct pion emission at the chemical freeze-out

with temperature Tch and the decayed pion produc-

tion from ∆→π+N between the chemical freeze-out

and thermal freeze-out [1, 2].

For the PCE condition, there is [1, 2, 8, 9]

n̄i(T,µi)

s(T,µ1,µ2, · · · )
=

n̄i(Tch,µ
ch
i )

s(Tch,µ1,µ2, · · · )
,

(i= 1,2, · · · ),
(10)

where temperature T is between the chemical freeze-

out temperature Tch and the thermal freeze-out tem-

perature Tth, µi is the chemical potential of the

species i, n̄i = ni +
∑

j 6=i
d̃j→i nj , d̃j→i is the fraction

of the stable particle species i to which the exited-

state particle species j decays. From Eq. (10) one

can get the chemical potentials of the particles at

Tch > T > Tth, and then obtain the EOS with the ther-

modynamic equations of the particle number density

ni, energy density ε, pressure P , and entropy density

s. Some details about the EOS and PCE condition

may be found in Refs. [1, 2].

As in Ref. [1], in our calculations the initial tem-

perature and baryon chemical potential are taken

to be T0 = 100 MeV and µb0 = 810 MeV, which

correspond to an initial energy density of ε0 =

0.47 GeV/fm3 and a baryon density of nb0 =

0.42 fm−3. The chemical freeze-out temperature is

taken to be Tch = 76 MeV, and the correspond-

ing chemical potential is 830 MeV. They are consis-

tent with the extrapolations obtained from hadronic

abundances at CERN/SPS, NBL/AGS, and GSI/SIS

[10, 11] collision energies. Based on the criteria of the

dependance of thermal freeze-out temperature to the

system energy density [12] at finite baryon chemical

potential, the thermal freeze-out temperature is cho-

sen as Tth = 40 MeV, which corresponds to a thermal

freeze-out energy density ε = 47 MeV/fm3 close to

45 MeV/fm3 predicted in Ref. [12].

2.3 Numerical solution

After knowing the EOS and initial conditions we
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can solve the equations of motion (5)–(9) numerically

by the HLLE scheme [4, 5, 7, 13–15].

In Fig. 1, we show the two-dimension density of

the energy in the x-z plane, ε(x,z) =

∫
ε(x,y,z)dy.

Here the initial transverse and longitudinal sizes of

the (2+1) hydrodynamic source are taken to be

ρ0 = z0 = 5 fm. One can see that energy den-

sity decreases rapidly with time. At t = 10 fm/c,

the energy density at the center of the source is

about half the initial energy density at the center.

Figs. 2(a) and (b) show the average transverse veloc-

ity 〈vρ(ρ)〉z =

∫
vρ(ρ,z)dz and the average longitudi-

nal velocity 〈vz(z)〉ρ =

∫
vz(ρ,z)dρ as functions of the

transverse and longitudinal coordinates, respectively.

Fig. 1. Two-dimensional density of energy in x-z

plane for the (2+1) hydrodynamic source with

ρ0 = z0 =5 fm.

3 Two-pion interferometry results

Two-pion interferometry (Hanbury-Brown-Twiss

effect) has been widely used in high-energy heavy-ion

collisions to provide information on the space-time

structure of a particle-emitting source [16, 17]. The

correlation function C(k1, k2) of HBT interferometry

is defined as the ratio of the two-particle momentum

distribution P (k1, k2) to the the product of the single-

particle momentum distribution P (k1)P (k2). Using

the QTIP interferometry technique [2], one can cal-

culate the single-pion and two-pion momentum dis-

tributions numerically, and construct the HBT corre-

lation function for the evolving sources [1, 2].

Fig. 2. (a) The average transverse velocity over

coordinate z. (b) The average longitudinal ve-

locity over coordinate ρ.

The imaging technique introduced by Brown and

Danielewicz [18] allows one to obtain the two-pion

source function S(r), the probability for emitting a

pion pair with spatial separation r in the pair center-

of-mass system (PCMS), from the HBT correlation

function. For our (2+1) dimension evolving source,
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we use the three-dimension imaging method [19] to

obtain the source functions S(rx), S(ry), and S(rz)

[3, 20], in the ‘out’ (parallel to the transverse momen-

tum of pion pair kT = (k1T +k2T)/2), ‘side’ (in the

transverse plane and perpendicular to kT), and ‘long’

(along z axis) directions [21].

Figure 3(a), (b), and (c) show the source functions

S(rx), S(ry), and S(rz) for the larger and smaller

transverse momenta of the pion pair kT. Here the

axis label rj denotes rx, ry, and rz for the panels

(a), (b), and (c), respectively. It can be seen that the

source function in the out direction is wider than that

in the side direction, and has a long tail at larger kT.

This reflects the fact that the source expansion, which

boosts the pair momentum, leads to different geome-

tries in the out and side directions. The shape of

the source function with the long tail is very different

Fig. 3. The source functions in x(out), y(side),

and z(long) directions.

from that of the Gaussian source [3, 22]. For the

larger kT, the width of the source function in the

out direction is larger than that for the smaller kT.

However, the width of the source function in the side

direction is smaller at larger kT than that at smaller

kT. The source function width in the long direction is

smaller at larger kT because the average longitudinal

momentum of the pairs is smaller at larger kT.

Once the source functions S(ri) are obtained, we

can calculate the moments 〈rn
i 〉 (n = 1,2, . . .) of ri

for the source functions, which provide the quanti-

tative information of the sources. The normalized

first-order moment and standard deviation, which are

normalized to the Gaussian radius Rg for a one di-

mensional Gaussian source [S(ri)∼ exp(r2
i /4Rg)], are

defined as [3]

R̃i =

√
π

2
〈ri〉, (11)

σ̃i =

√
〈r2

i 〉−〈ri〉2√
2−4/π

, (12)

where i = x,y,z, and

〈rn
i 〉=

∫
drir

n
i S(ri)∫

driS(ri)

, n = 1,2, . . . (13)

It is demonstrated in Ref. [3] that the quantities

R̃i are suitable for describing the source sizes, and the

ratio σ̃i/R̃i reflects the deviation of the source distri-

bution from the Gaussian form Ref. [3]. Figs. 4(a),

4(b), and 4(c) show the moments R̃i (symbols 4) cal-

culated for our model source as functions of kT in

the out, side, and long directions, respectively. In

Figs. 4(e), 4(f), 4(h), we exhibit the usual HBT radii

for the source, Rout, Rside, and Rlong, obtained by fit-

ting the HBT correlation function with the Gaussian

parameterized formula

C(qout, qside, qlong)= 1+λe−q2
outR2

out−q2
sideR2

side−q2
longR2

long .

(14)

Here qout, qside, and qlong are the components of the

relative momentum of the pion pair in the out, side,

and long directions, and in the longitudinally comov-

ing system (LCMS) [17]. In Fig. 4(a), the symbols

∇ denote the results of R̃′
x = γ−1

T R̃x, where γ−1
T is

the Lorentz contracted factor of the LCMS to PCMS.

One can see that the results of R̃′
x, R̃y, and R̃z as func-

tions of kT show a similar trend to that of the HBT

radii, although their values are smaller than the cor-

responding results of the HBT radii. It is well known

that the HBT radii obtained by the Gaussian formula
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fit may be distorted for the sources with non-Gaussian

distributions. However, the characteristic sizes of the

source given by the first-order moments are model

independent [3].

In Fig. 4(d) we exhibit the zero-order moment of

the relative coordinate r for the source [3],

λ̃ = 4π

∫∞
0

drS(r)r2 . (15)

The value of λ̃ is the intercept of the correlation func-

tion at zero relative momentum. Theoretically, it is

unity for a completely chaotic source. For compar-

ison, in Fig. 4(h) we show the results of the HBT

chaotic parameter λ obtained by the Gaussian for-

mula fit.

In Fig. 5 we show the results of rσR, the ratio of

the normalized standard deviation σ̃ to the first-order

moment R̃ as functions of kT. Here the symbols ◦,
4, and ∇ denote σ̃x/R̃′

x, σ̃y/R̃y, and σ̃z/R̃z, respec-

tively. One can see that the ratio results in the out di-

rection and in the long direction at the smallest kT are

much larger than unity. It is because the correspond-

ing source functions seriously deviate from those of

the Gaussian source [3, 22]. The ratio results are

consistent with the source functions in Fig. 3. They

are sensitive to the shapes of the source functions.

Fig. 4. (a)–(c) The first-order moments in the out, side, and long directions as functions of kT. (d) The

zero-order moment as a function of kT. (e)–(g) The HBT radii in the out, side and long directions. (h) The

HBT chaotic parameter as a function of kT.
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Fig. 5. The ratio of the standard deviation to

first-order moment.

4 Summary and conclusion

We investigate the interferometry imaging for the

evolving sources in the heavy ion collisions at the

HIRFL-CSR energy. The source evolution is de-

scribed by the relativistic hydrodynamics in (2+1)

dimensions. Using the interferometry technique of

QTIP [2] and the three-dimension imaging method

[19], we investigate the source functions in the out,

side and long directions [21]. It is found that the

source expansion leads to wide source function distri-

butions in the out and long directions. At a larger

transverse pion pair momentum kT, the width of the

source function in the out direction is larger than that

at smaller kT. However, the width of the source func-

tion in the side direction is smaller at larger kT than

that at smaller kT. The width of the source function

in the long direction is smaller at larger kT because

the average longitudinal momentum of the pairs is

smaller at larger kT. The investigations for the source

function moments indicate that the first-order mo-

ments R̃i (i = x,y,z) can describe the source sizes in

the out, side and long directions, and the zero-order

moment λ̃ may provide information on the chaotic de-

gree of the source. Unlike the HBT results obtained

by the usual Gaussian formula fit, the results of the

moments are model independent. The ratio of the

normalized standard deviation to the first-order mo-

ment is sensitive to the shape of the source function.

For the non-Gaussian source function, the result of

the ratio is larger than unity.
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