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A design study of a magnifying magnetic lens

for proton radiography *
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Abstract: Magnifying magnetic lenses can be used in high-energy proton microscopes. The −I lens suggested

by Zumbro is analyzed in this paper, and a new type of magnetic lens called a lengthened lens is introduced.

Theoretical analysis shows that the lengthened lens can form a magnifying lens, and at the same time the main

advantages of a Zumbro lens are inherited. Using the My-BOC beam dynamics code, an example of the design

is shown. The results show that the method of designing magnifying magnetic lenses is effective.
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1 Introduction

High-energy proton radiography is a powerful tool

for the diagnosis of dense objects [1, 2]. Since the

transmitted protons undergo multiple coulomb scat-

tering (MCS), the image may be seriously blurred. A

magnetic lens is used to cancel the effects of MCS.

Zumbro, Mottershead and Morris suggested a type

of lens whose first-order transfer matrix is the −I

matrix [3]. The major part of the chromatic aberra-

tion is canceled by the lens, which is very useful for

proton radiography. However, the magnification is

confined to −1. In proton microscope systems, mag-

nifying lenses must be used. In this paper, the design

method of a magnifying magnetic lens is studied.

2 Description of the −I lens [3, 4]

Generally, the first-order transfer matrix R of an

imaging lens maps a particle with initial coordinates

(x, θ) to a final position xf = R11x + R12θ. Point-

to-point imaging meansR12 = R34 = 0, so the final

position is independent of the initial angle.

A quadrupole beamline is reflection symmetric if

its second half is a mirror image of the first half.

The configuration +A−B+B−A is an example of this.

The symmetry forces the following relationships:

R34 = R12, R43 = R21,

R33 = R22, R44 = R11.
(1)

The magnetic lens suggested by Zumbro has four

uniform quadrupoles, which form two uniform dou-

blets. The drift spaces at the front and end of each

doublet have the same length. This type of lens is

called a Zumbro lens, and is shown Fig. 1. Here, k is

the strength of the quadrupoles, l is the length of the

quadrupoles, and D1 and D2 are the lengths of the

drift spaces.

Fig. 1. A Zumbro lens.

In a Zumbro lens, each doublelet and the total

lens are all reflection symmetric.

If the first-order transfer matrix of each doublet

is H , the transfer matrix of the magnetic lens can be
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shown as the following:

R = H2 =−I det(H)+H ·tr(H). (2)

If tr(H) = 0, the transfer matrix is −I and the point-

to-point conditions are satisfied.

If the injected beam is dispersive, the chromatic

matching condition should be satisfied,

R′

11 +ωR′

12 = 0, (3)

here prime denotes the differential to momentary dis-

persion. The injected beam is regarded as emitting

from a virtual point, so θ = ωx, and ω is the coef-

ficient. As emittance exists, the actual relationship

should be θ = ωx+ϕ.

When the injected beam is matched, the position

error of a particle is written as follows:

B = Cϕ∆, (4)

here ϕ is the angle dispersion, ∆ is the momentary

dispersion, and C = R′

12 is called the chromatic factor.

C can be written as T126 in the transport notation.

Angle sorting is a very important function for

magnetic lenses, since it can be used to distinguish

materials. The Fourier plane has an angle sorting

function, which means that the position of a particle

at this plane is determined by its initial angle only,

and is independent of its initial position.

For a Zumbro lens, the Fourier planes of both the

x- and y-planes are at the middle of the lens,

xmid = H12ϕ. (5)

There are many advantages of Zumbro lenses. For

example, point-to-point imaging, equal magnification

(R11 = R33 = −1), coincided Fourier planes, simple

operation (the same excitation for all quadrupoles),

and so on.

3 Analysis of the magnifying lens

Like the −I lens, when we have enough

quadrupoles there are infinite modes for us to get a

magnifying lens.

The main design constraints are imaging (R12 =

R34 = 0) and equal magnification (R11 = ±R33) in

both planes.

We expect to retain the main features of the −I

lens.

The reflection symmetric feature of the −I lens

makes the configuration very simple. But this feature

cannot be retained, otherwise we will get R11 = 1/R33

since Eq. (1).

The nearest way to retain this feature is to add

a drift space after the reflection symmetric structure.

We call this structure the lengthened lens, and it is

shown in Fig. 2. Here, k1, k2, l, D1 and D2 are sim-

ilar to Fig. 1, f1 and f2 are the focus length of the

quadrupoles with a thin lens approximation, and d is

the length of the added drift space.

Fig. 2. The configuration of the lengthened lens.

We write the transfer matrix of the reflection sym-

metric structure as R0, and the total transfer matrix

as R. Since Eq. (1), we can write R0 as follows:

R0x =

[

R011 R012

R021 R022

]

, (6)

R0y =

[

R022 R012

R021 R011

]

. (7)

Point-to-point imaging forces R12 = R34 = 0,

which gives the following condition:

R011 = R022. (8)

When condition (8) is satisfied, we can get the

magnification M , and the length of the drift space d,

Mx = My = 1/R011, (9)

d = −R012/R011. (10)

A thin lens approximation is then used to get fur-

ther results.

From Eq. (8), the imaging condition can be writ-

ten as follows:

D1(D
2
2 +(f1−f2)f2) = D2f

2
2 . (11)

The magnification can be written as:

M =
T

−T +S
. (12)

Here, T = f1(D
2
2 + (f1 − f2)f2)

2 and S = 2(f1 −

f2)
2f2(D

2
2+f1f2). In the above expressions, T is pos-

itive and S is not negative.

When f1 = f2, we see that Mx and My are both

−1, and the length of drift space d is zero. We now

get the Zumbro lens.

When f2 deviates from f1, S is growing from zero

to positive infinity. Now we know that when S is close

to T , we can get an arbitrary magnification.



No. 3 YANG Guo-Jun et al: A design study of a magnifying magnetic lens for proton radiography 249

The dispersion of the beam should also be consid-

ered. The injected beam is regarded as emitting from

a virtual point. From the particle coordinate map we

get the matching condition R′

11+ωR′

12 = 0, which has

already been shown in Eq. (3).

When the injected beam is matched, the parti-

cle position at the image plane can be written as

xf = R11x0 + R′

12ϕ∆ [5]. The position error in the

object coordinates can be written as follows:

B =−Cϕ∆/M. (13)

Here, M = R11, which is the magnification, and

C = R′

12 = T126. When magnification M is greater

than 1, image blurring is compressed by a factor of

M , so chromatism is reduced. The chromatic factor

can now be written as C/M [5].

Using the thin lens approximation, the chromatic

factor can be written in a complicated form,

T126 = (4D1(D
2
2 f 2

1 +D2
1(−2D2

2 +(f1−f2)
2)

+D1 D2(2f 2
1 +f 2

2 ))+d(4D2
1(−2D2

2

+(f1−f2)
2)−2D2 f1 f 2

2 +2D1(3D2
2 f1

+f1(f1−f2) f2 +2D2(f
2
1 +f 2

2 ))))/(f 2
1 f 2

2 ),

(14)

T346 = (4D1(D
2
2 f 2

1 +D2
1(−2D2

2 +(f1−f2)
2)

+D1 D2(2f 2
1 +f 2

2 ))+d(4D2
1(−2D2

2

+(f1−f2)
2)+2D2 f1f

2
2 +D1(−6D2

2 f1

+2f1 f2(−f1 +f2)+4D2(f
2
1 +f 2

2 ))))/(f 2
1 f 2

2 ).

(15)

Numerical computations show that the two chro-

matic factors are not equal. With proper parameters,

the chromatic factor of one direction can be much

smaller than that of the −I lens, but in the other

direction the chromatic factor cannot be reduced sig-

nificantly. We do not find a case where the two chro-

matic factors are both much smaller than those of the

−I lens.

Fourier planes of both the x-plane and y-plane

exist. The two planes may not coincide for the mag-

nifying lens. We will show that the two planes are

very close in lengthened lens with the numerical sim-

ulation.

Since there is so much freedom, there are infinite

configurations for a magnifying lens. A lengthened

lens is only one of theses configurations. With the

help of beam dynamics codes, we can get other con-

figurations by searching the parameters of each ele-

ment.

However, the lengthened lens has inherited many

of the merits of the −I lens. The structure is very

simple and there are only two quadrupole excita-

tion states. The approximate coincidence of the two

Fourier planes is very useful for experiments.

4 An example of the magnifying lens

design

In a lengthened lens, we see that parameter S

should be close to parameter T to achieve magnifi-

cation when the thin lens approximation is assumed.

However, the expression is very complicated and hard

to use. At the same time, real quadrupoles are not

thin lenses, so beam dynamics codes are used to de-

sign the lens.

Nowadays, there are many beam dynamics codes.

Here, the My-BOC code [6], which is based on Lie

algebra, is used. The parameters can be confined in a

specified interval when searched, since the BOBYQA

algorithm developed by J.D. Powell is used [7]. This

is very convenient when designing a beamline.

An example of the design is shown as Fig. 3,

where the beam energy is 800 MeV, the highest gra-

dient of quadrupoles is 11 T/m, and the length of the

quadrupoles is 0.4 m.

Fig. 3. Particle trajectories.
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The magnification is −4 at both the x- and y-

plane.

In this figure, we see that the two Fourier planes

are very close. In fact they do not coincide. The dis-

tance between them is only a few millimeters. We

changed the parameters of the lens, including the

beam energy, the strength of the quadrupoles and the

length of the drift spaces, and this status remained.

We believe that this is true in all cases, but it is only

now that we have got mathematical certification of

this.

T126 is 18.94 and 36.13 m for the x- and y-plane

of this lens individually. Unlike the −I lens, the two

factors are not equal. Consider Eq. (12), the chro-

matic factor is 4.74 and 9.03 m for the x- and y-plane

individually.

A comparative design of an −I lens with the same

condition shows that the chromatic factor is 10.08 m

for both the x- and y-plane. We can see that the

chromatic factor reduces significantly in the x-plane,

and reduces a little in the y-plane when using a mag-

nifying lens.

Designs other than those using a lengthened lens

were also studied, and many cases were acquired.

For example, where the parameters of two or three

quadrupoles and the lengths of some of the drift

spaces varied freely. In some of these cases the image

may be mirrored, that is Mx = −My, and many of

them can also be used in proton radiography. How-

ever, in all the cases we studied, the distance between

the two Fourier planes is large and the chromatic fac-

tors are similar to those of the lengthened lens.

5 Conclusion

In high-energy proton radiography, magnifying

magnetic lenses may be used in microscopy systems.

Based on the −I lens proposed by Zumbro, we sug-

gest a lens configuration called lengthened lens, which

inherits the main merits of the Zumbro lens. Theoret-

ical analysis shows that the lengthened lens can form

a magnifying lens, and some relationships are given.

Using the My-BOC beam dynamics code, an exam-

ple design is shown, and the design results show that

the method of designing magnifying magnetic lenses

is effective.
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