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Two-pion interferometry for viscous

hydrodynamic sources *

Efaaf M. J.(S�)1 SU Zhong-Qian(�¥_)1 ZHANG Wei-Ning(Ü¥w)1,2;1)

1 School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
2 Department of Physics, Harbin Institute of Technology, Harbin 150006, China

Abstract: The space-time evolution of the (1+1)-dimensional viscous hydrodynamics with an initial quark-

gluon plasma (QGP) produced in ultrarelativistic heavy ion collisions is studied numerically. The particle-

emitting sources undergo a crossover transition from the QGP to hadronic gas. We take into account a usual

shear viscosity for the strongly coupled QGP as well as the bulk viscosity which increases significantly in the

crossover region. The two-pion Hanbury-Brown-Twiss (HBT) interferometry for the viscous hydrodynamic

sources is performed. The HBT analyses indicate that the viscosity effect on the two-pion HBT results is small

if only the shear viscosity is taken into consideration in the calculations. The bulk viscosity leads to a larger

transverse freeze-out configuration of the pion-emitting sources, and thus increases the transverse HBT radii.

The results of the longitudinal HBT radius for the source with Bjorken longitudinal scaling are consistent with

the experimental data.
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1 Introduction

The experimental results of the Relativistic Heavy

Ion Collider (RHIC) at Brookhaven National Labo-

ratory (BNL) indicate that the matter produced in

the central collisions of Au+Au at
√

sNN =130 and

200 GeV is a strongly coupled quark-gluon plasma

(sQGP), and behaves like a perfect liquid [1]. Re-

cently, the studies of the dissipative fluid dynamics

have become a very hot topic in high energy heavy

ion collisions [2–19], because people want to know

why the sQGP exhibits an almost perfect fluid prop-

erty and how to probe the viscosity effects on exper-

imental observables.

The relativistic formulism of dissipative fluids was

originally derived by Eckart [20] and Landau and Lif-

shitz [21]. Their theories contain only the first-order

terms of the dissipative quantities and therefore are

referred to as the first-order theories of dissipative

fluids. The theories of dissipative fluids which in-

clude the terms up to the second order of the dis-

sipative quantities were developed by Müller (non-

relativistic) [22] and Israel and Stewart (relativistic)

[23]. These second-order theories can avoid the prob-

lem that sometimes the first-order theories may not

satisfy causality. So they are also called the causal

theories of dissipative fluids dynamics.

Although the Israel-Stewart second-order formal-

ism for relativistic dissipative fluids [23] was estab-

lished thirty years ago (in the 1970s), its numeri-

cal implementation in high energy heavy ion colli-

sions begins in the 21st century. In Ref. [24], the

viscous hydrodynamics based on the second-order

theory is first used to study the system expansion

in relativistic heavy ion collisions with the Bjorken

scaling hypothesis [25]. Recently, the causal dissi-

pative fluid dynamics has been used in high heavy

ion collisions for investigations of the effects of shear

viscosity [4–7, 10–15] and both shear and bulk vis-

cosities [16–19] on the transverse momentum distri-

bution [4–6, 11, 15–19], elliptic flow [5, 7, 10–18],

and Hanbury-Brown-Twiss (HBT) interferometry

[6, 18, 19].

As is well known, a dissipative fluid has not only
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shear viscosity but also bulk viscosity. Recent re-

search [16, 17] indicates that the effects of the shear

and bulk viscosities on the elliptic flow are completely

different in the RHIC heavy ion collisions. The shear

viscosity suppresses the v2 at larger transverse mo-

menta but the bulk viscosity increases it [16, 17].

Unlike elliptic flow, which reflects the anisotropic

pressure of the system, HBT correlations are related

to the space-time structure of the particle-emitting

source. Investigations of the shear and bulk viscosity

effects on HBT interferometry may provide informa-

tion about the shear and bulk viscosities from another

point of view.

In the present work, we begin with the equations

based on the Israel-Stewart theory for the net baryon

free system formed in ultrarelativistic heavy ion col-

lisions. For the central collisions, it is assumed that

the system has Bjorken cylinder geometry (expanding

isotropically in transverse and satisfying longitudinal

boost-invariance) [26–28] and undergoes the crossover

transition from the QGP to hadronic gas. We shall

take into account both the shear and bulk viscosities

and solve the viscous hydrodynamic equations by the

relativistic Harten-Lax-Leer-Einfeldt (RHLLE) algo-

rithm [28–31]. By applying a simulated analysis of

two-pion HBT interferometry [31, 32] to the (1+1)-

dimensional viscous hydrodynamic sources, we inves-

tigate the effects of the shear and bulk viscosities on

the HBT radii Rout, Rside, and Rlong [33, 34]. The

HBT analyses indicate that the viscosity effect on the

HBT results is small if one considers only the shear

viscosity. The bulk viscosity leads to a larger trans-

verse freeze-out configuration of the pion sources, and

thus increases the transverse HBT radii. The results

of the longitudinal HBT radius for the source with

Bjorken longitudinal scaling are consistent with the

experimental data.

This paper is organized as follows. In Sec. 2, we

review briefly the evolution equations of the relativis-

tic dissipative fluid dynamics for the net baryon free

system with Bjorken cylinder geometry. We present

the expressions of the relaxation equations for the

shear tensor and bulk pressure for the system consid-

ered. The detailed derivations are given in Appendix

A. In Sec. 3, we discuss the numerical algorithm for

solving the viscous hydrodynamics. The equations of

state and initial conditions used in our calculations

are outlined. We present our numerical results of the

viscous and ideal fluid evolutions. In Sec. 4, we per-

form the two-pion HBT interferometry for the viscous

hydrodynamic sources. We investigate the viscosity

effects on the HBT radii for the viscous hydrodynamic

sources with only shear viscosity and with both shear

and bulk viscosities. We also investigate the HBT

results for the viscous sources with lower and higher

freeze-out temperatures and initial energy densities.

Finally, a conclusion is given in Sec. 5.

2 Equations of relativistic dissipative

fluid dynamics

First, we briefly review the evolution equations

of relativistic dissipative fluid dynamics for a system

with Bjorken-cylinder geometry and zero net baryon

density. The basic equations can be referred to [2–

4, 8, 35].

The evolution equations of hydrodynamics come

from physics conservations. For the baryon free sys-

tem, we consider only the energy-momentum conser-

vation in the hydrodynamics. It is convenient to de-

scribe the Bjorken-cylinder system with the coordi-

nates (τ, ρ, φ, η), where τ =
√

t2−z2 is the longitu-

dinal proper time, ρ and φ are the polar coordinates

in the plane transverse to the beam direction z, and

η =
1

2
ln[(t+z)/(t−z)] is the space-time rapidity. The

metric tensors gµν and gµν are expressed in the frame

of these curvilinear space-time coordinates as

gµν = diag
(
1,−1,−1/ρ2,−1/τ 2

)
,

gµν = diag
(
1,−1,−ρ2,−τ 2

)
.

(1)

Some notations used in this paper are

dµuν ≡ ∂µ uν +Γ ν
αµuα, (2)

Γ γ
αβ ≡ 1

2
gγσ
(
∂α gβσ +∂β gσα−∂σ gαβ

)
, (3)

Θ ≡ dµuµ, D≡uµdµ, (4)

∇µ ≡ ∆µνdν , (5)

∆µν ≡ gµν −uµuν , (6)

∇〈µuν〉 ≡ ∇(µuν)− 1

3
∆µνdλuλ, (7)

A(αβ) ≡ (Aαβ +Aβα)/2, (8)

were dµ denotes the covariant derivative, ∂α = ∂/∂xα

and uµ = γ(1, v) are the 4-derivative and 4-velocity

(γ = 1/
√

1−v2), Γ γ
αβ is the Christoffel symbol, and

A(αβ) denotes the symmetrization of the quantity

Aαβ .

We adopt the Landau and Lifshitz frame [21] in
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which the local energy flow is zero. The energy-

momentum tensor of a fluid cell in relativistic dis-

sipative hydrodynamics is

T µν = εuµuν −(p+Π)∆µν +πµν , (9)

where, ε is the energy density, p is the local isotropic

pressure, Π is the bulk viscosity pressure, and π
µν is

the shear stress tensor. Using the covariant deriva-

tive form, the energy-momentum conservation can be

reexpressed as

dµT µν ≡ ∂µ T µν +Γ µ

µλT λν +T µλΓ ν
λµ = 0. (10)

For the Bjorken cylinder, the longitudinal veloc-

ity is given by vz = z/t and the hydrodynamical so-

lution at an arbitrary longitudinal coordinate z can

be obtained by the Lorentz boost with the rapidity

η = tanh−1(z/t) from the system’s transverse evolu-

tion at z = 0 [26–28, 36]. So we need only solve the

hydrodynamical equations at z = 0 (η = 0) in this

case. Considering uη = 0 at z = 0 and assuming

uφ = 0, Eq. (10) becomes





∂τ T ττ +∂ρ T ρτ +Γ τ

ηηT
ηη +Γ η

ητT ττ +Γ φ

φρT
ρτ = 0,

∂τ T τρ +∂ρ T ρρ +Γ ρ
φφT φφ +Γ φ

φρT
ρρ +Γ η

ητT τρ = 0.

(11)

Introducing the quantities

Pρ = p+Π +πρρ/γ2, (12)

Pφ = p+Π +πφφρ2, (13)

Pη = p+Π +πηητ 2, (14)

E = (ε+Pρ)γ
2−Pρ, (15)

M = (E +Pρ)vρ, (16)

the non zero components of the energy-momentum

tensor T µν can be expressed as

T ττ = E, T τρ = T ρτ = M, (17)

T ρρ = Mvρ +Pρ, (18)

T φφ =
Pφ

ρ2
, T ηη =

Pη

τ 2
, (19)

and, Eq. (11) can be rewritten as

∂τ E +∂ρ[(E +Pρ)vρ] = −(E +Pρ)
(vρ

ρ
+

1

τ

)

+
(Pρ−Pη)

τ
, (20)

∂τ M +∂ρ(Mvρ +Pρ) = −M
(vρ

ρ
+

1

τ

)

− (Pρ−Pφ)

ρ
. (21)

The coupled Eqs. (20) and (21) are the evolution

equations of the dissipative hydrodynamics for the

Bjorken cylinder system, which can be numerically

solved by the RHLLE algorithms [28–31]. The quan-

tities Pρ, Pφ, and Pη include the effects of dissipation

and they reduce to the isotropic pressure p for perfect

fluids.

Next, we present the relaxation equations that the

dissipation quantities (πµν and Π) are satisfied for

our system. The detailed derivations of the relaxation

equations are given in Appendix A. In order to obtain

the system evolution we need to solve the Eqs. (20)

and (21) together with the relaxation equations.

In the Landau and Lifshitz frame and for the

baryon free system, the dissipative effect from the

heat conduction can be neglected [2, 3, 5, 10, 11].

On the other hand, one can also ignore the effect

of vorticity because it is small for the longitudinally

boost-invariant system [7, 12, 13]. In this case, the

relaxation equations for the shear tensor π
µν and bulk

pressure Π can be written as [2–4, 8, 35]

τπ∆µα∆νβDπαβ +π
µν

= 2 η̃∇〈µuν〉− 1

2
π

µν η̃ T dλ

(τπuλ

η̃ T

)
, (22)

τΠDΠ +Π

= −ζ̃ dµuµ− 1

2
Π ζ̃ Tdλ

(τΠuλ

ζ̃ T

)
, (23)

where, η̃ and ζ̃ denote the shear and bulk viscous coef-

ficients, τπ = 2β2η̃ and τΠ = β0ζ̃ are the corresponding

relaxation times, β2 and β0 are the relaxation coef-

ficients for the expansion of entropy flow up to the

second-order of the dissipative quantities, and T is

the temperature.

For the symmetric Bjorken cylinder and at z = 0

(uφ = uη = 0), Eqs. (22) and (23) can be written in

forms that are suitable for solving numerically as for

(detailed derivations, see Appendix A)

∂
∂τ

τρρ + vρ

∂τρρ

∂ρ
=

1

γτπ

(−τρρ +2 η̃ σρρ)

−τρρ

2γ

[
Θ+

η̃ T

τπ

D
( τπ

η̃ T

)]
,(24)
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∂
∂τ

τφφ + vρ

∂τφφ

∂ρ
=

1

γτπ

(−τφφ +2 η̃ σφφ)

−τφφ

2γ

[
Θ+

η̃ T

τπ

D
( τπ

η̃ T

)]
, (25)

∂
∂τ

τηη + vρ

∂τηη

∂ρ
=

1

γτπ

(−τηη +2 η̃ σηη)

−τηη

2γ

[
Θ+

η̃ T

τπ

D
( τπ

η̃ T

)]
, (26)

∂
∂τ

Π + vρ

∂Π

∂ρ
=

1

γτΠ

(−Π− ζ̃ Θ)

−Π

2γ

[
Θ+

ζ̃ T

τΠ

D
( τΠ

ζ̃ T

)]
, (27)

where τρρ, τφφ, and τηη are three introduced quanti-

ties with relations to the nonzero components of π
µν

as

π
µν =




γ2v2
ρτ

ρρ γ2vρτ
ρρ 0 0

γ2vρτ
ρρ γ2τρρ 0 0

0 0 ρ−2τφφ 0

0 0 0 τ−2τηη




, (28)

where

τρρ +τφφ +τηη = 0, (29)

from the traceless condition π
µ
µ = 0 [4, 24]. In

Eqs. (24)–(27),

Θ = dµuµ=
∂γ

∂τ
+

∂(γ vρ)

∂ρ
+γ
(vρ

ρ
+

1

τ

)

≡ θ+γ
(vρ

ρ
+

1

τ

)
, (30)

σρρ =
(
−θ+

1

3
Θ
)
, (31)

σφφ =
(−γ vρ

ρ
+

1

3
Θ
)
, (32)

σηη =
(−γ

τ
+

1

3
Θ
)
, (33)

and D = uµdµ reduce to γ(∂τ +vρ ∂ρ).

When performing numerical calculations we need

to solve the evolution Eqs. (20) and (21) and the

relaxation Eqs. (24)–(27) simultaneously. For the

sQGP, the ratio of the shear viscosity to the entropy

density satisfies η̃/s>
∼

1/4π [37–39], and the ratio of

the bulk-to-shear viscosities is proportional to the de-

viation of the sound velocity square from that of the

ideal hadronic gas, ζ̃/η̃ ' −κ(v2
s − 1/3) [17, 40–42].

Based on the calculations of the N = 2∗ gauge the-

ory, the value of κ is between 3.142 and 4.935 [41]. In

our calculations we take η̃/s = 2Cs(1/4π) (Cs = 1,2)

and κ =4.75. The relaxation times for the shear and

bulk viscosities are taken as τπ =
6η̃

sT
and τΠ = τπ as

in Refs. [6, 10, 12, 15, 17, 18, 23] for simplicity.

3 Numerical solution of viscous hy-

drodynamics

When solving the viscous hydrodynamic equa-

tions numerically, we encounter the following two

types of equations:

∂τ U +∂ρ F (U) = G(U) (34)

and

∂τ U +vρ ∂ρ F (U) = G(U). (35)

For the evolution Eqs. (20) and (21), U in Eq. (34)

can be replaced by E or M , and for the relaxation

Eqs. (24)–(27), U in Eq. (35) can be replaced by τ ρρ,

τφφ, τηη , or Π . Eq. (34) can be solved directly by

the RHLLE algorithm [28–31]. For Eq. (35) we can

change it to the type of Eq. (34) by adding the term

F (U) ∂ρ vρ to both sides of the equation, and then

solve it with the RHLLE algorithm. In the calcula-

tions, we solve simultaneously the six coupled equa-

tions of (20), (21), and (24)–(27) for the quantities

(E,M,τ rr , τφφ, τηη,Π) at each time step. The width

of a time step is taken to be ∆τ = 0.04 fm/c and the

width of a space step is taken to be 0.99∆τ fm. The

set of the coupled Eqs. (20), (21), and (24)–(27) is

closed by the equation of state (EOS), and the trans-

verse velocity and local energy density satisfy

vρ =
M

E +Pρ

, ε = E− M 2

E +Pρ

. (36)

The EOS used in the calculations is the paramet-

ric EOS which combines a hadron resonance gas at

low temperatures with lattice QCD at high tempera-

tures [43]. Fig. 1(a) shows the energy density ε and

pressure p as functions of temperature. Fig. 1(b)

shows the square of sound velocity v2
s and the dif-

ference between ε and 3p, ∆ = ε−3p, as functions of

temperature. The transition temperature Tc is taken

to be 170 MeV.
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Fig. 1. (color online) (a) The energy density ε

and pressure p as functions of temperature.

(b) The square of sound velocity v2
s and the

difference ∆ = ε−3p as functions of tempera-

ture.

On the basis of the Bjorken picture [25], the sys-

tem evolves hydrodynamically after a proper time

τ0. In our calculations, we take the initial time

τ0 = 0.6 fm/c, and use a Gaussian initial transverse

distribution of energy density at z = 0,

ε(ρ,z = 0) = ε0 exp(−ρ2/2σ0), (37)

where ε0 is taken to be 30 GeV/fm3 and σ0 is taken

to be 3.3 fm. The initial shear tensor components are

taken to be

τρρ(ρ) = τφφ(ρ) =
ε(ρ)

18

and

τηη(ρ) =−ε(ρ)

9

as in Ref. [2]. We find that the system evolution is

almost independent of the initial value of the bulk

pressure because it is almost zero at the initial tem-

perature, which is much higher than Tc. So we take

the initial bulk pressure to be zero in the calculations.

Figures 2(a) and (b) show the temperature and

transverse velocity profiles in the z = 0 plane for the

viscous fluid with only shear viscosity (Cs = 2). Cor-

respondingly, Figs. 2(c) and (d) show the temperature

and transverse velocity profiles in the z = 0 plane for

the fluid with shear and bulk viscosities. In Fig. 2,

the dashed lines are for the ideal fluid for comparison,

and the time t0 = τ0, tn = τ0+2n(20∆τ) (n = 1,2,3,4,

∆τ = 0.04 fm/c). For the only shear viscosity case,

the viscous fluids cool a little more slowly than the

ideal fluid for small time, and the transverse velocities

of the viscous fluid are higher than the correspond-

ing velocities of ideal fluid. Once the bulk viscosity

is taken into account, one can see that the viscous

fluid cools more slowly and its transverse velocities

are lower than the corresponding velocities of ideal

fluid. This is because the bulk viscosity decreases the

system pressure (see Eq. (9) and notice Π < 0) and

therefore decreases the gradient of the pressures in

and out of the system.

In Fig. 3, we show the ratios of the viscosity quan-

tities τρρ, τφφ, τηη , and Π to the central initial energy

density ε0, as functions of the transverse coordinate

and time for the viscous fluid (Cs = 2). In Fig. 4,

we draw the isotherms for the viscous (Cs = 2) and

ideal fluids in the z = 0 plane. It can be seen that the

contours for the shear-only viscous fluid are slightly

larger than those of the ideal fluid, and the bulk vis-

cosity lets the contours of the viscous fluid be much

larger than those of the ideal fluid. This is consistent

with the results in Fig. 2.

After knowing the transverse evolution at z =

0 (t = τ), we can obtain the temperature and ve-

locity at arbitrary z for the Bjorken cylinder system

by [26–28, 36]

T (t,ρ,z) = T (τ,ρ,0), (38)

vρ(t,ρ,z) = vρ(τ,ρ,0)
τ

t
, vz =

z

t
. (39)

Then, we can calculate the two-pion HBT correlation

functions by a simulation [31, 32].
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Fig. 2. (color online) The temperatures and transverse velocities of the viscous fluids with only shear viscosity

(Cs = 2) and with the shear and bulk viscosities, in the z = 0 plane. The labeled time is respectively t0 = τ0,

tn = τ0 +2n(20∆τ ) (n =1,2,3,4, ∆τ =0.04 fm/c).

Fig. 3. (color online) The ratios of τ ρρ, τφφ, τηη, and Π to ε0 as functions of the transverse coordinate and

time for the viscous fluid (Cs = 2). Here, the time is taken to be τ0 (solid black), τ0 +6∆τ (dashed black),

τ0+12∆τ (solid red), τ0+24∆τ (dashed red), τ0+48∆τ (solid blue), and τ0+96∆τ (dashed blue), respectively.

(∆τ = 0.04 fm/c)
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Fig. 4. (color online) The isotherms for 0.7 and

0.8 Tc in z = 0 plane.

4 Pion interferometry analysis

The two-pion HBT correlation function is defined

as the ratio of the two-pion momentum distribution

P (k1,k2) to the product of the single-pion momentum

distribution P (k1)P (k2). For a chaotic pion-emitting

source, P (ki) (i = 1,2), and P (k1,k2) can be expressed

as [44]

P (ki) =
∑

Xi

A2(ki,Xi), (40)

P (k1,k2) =
∑

X1,X2

∣∣∣Φ(k1,k2;X1,X2)
∣∣∣
2

, (41)

where A(ki,Xi) is the magnitude of the amplitude for

emitting a pion with 4-momentum ki = (ki,Ei) at Xi

and Φ(k1,k2;X1,X2) is the two-pion wave function.

Assuming that the emitted pions propagate as free

particles, Φ(k1,k2;X1,X2) is simply

Φ(k1,k2;X1,X2)

=
1√
2
[A(k1,X1)A(k2,X2)e

ik1·X1+ik2·X2

+A(k1,X2)A(k2,X1)e
ik1·X2+ik2·X1 ]. (42)

For a set of variables of the relative momentum,

{qj} (qj = |k1−k2|j), the two-pion correlation function

can be expressed as [32]

C({qj}) =
Cor({qj})

Uncor({qj})
, (43)

where

Cor({qj}) =

∫
dk1dk2P (k1,k2)

∏

j

δ(|k1−k2|j −qj)

(44)

and

Uncor({qj}) =

∫
dk1dk2P (k1)P (k2)

∏

j

δ(|k1−k2|j−qj)

(45)

are the correlated and uncorrelated pion pair distri-

butions with {qj}.
In our simulated calculations, we first generate

the pion momentum k on the freeze-out hypersurface

Σ(X) with temperature Tf , according to the proba-

bility of the Cooper-Frye formula [45]

P (k)∝
∫
kµdΣµf

(kµuµ

T

)
. (46)

For the viscous fluid, the distribution f = f0+δf . We

take f0 for the ideal fluid as the Boltzmann distribu-

tion, and take δf for the shear and bulk viscosities as

[9]

δf = f0

(
kµuµ

T

)
pµpν

2(ε+p)T 2

(
πµν −

2

5
Π∆µν

)
. (47)

In Cartesian frame, π
µν can be expressed in terms of

the cylindrical variables as [2]

π
µν =




Πρη cosh2η−τηη τρργ2vρ cosφcoshη τρργ2vρ sinφcoshη Πρη coshη sinhη

τρργ2vρ cosφcoshη Πρφ cos2φ+τφφ Πρφ cosφsinφ τρργ2vρ cosφsinhη

τρργ2vρ sinφcoshη Πρφ cosφsinφ Πρφ sin2φ+τφφ τρργ2vρ sinφsinhη

Πρη coshη sinhη τρργ2vρ cosφsinhη τρργ2vρ sinφsinhη Πρη cosh2η−τρργ2v2
ρ




, (48)

where µ,ν = t,x,y,z, Πρη = τρργ2v2
ρ + τηη, and

Πρφ = τρργ2−τφφ.

After obtaining the momenta ki (i = 1,2) of the

pions emitted on the freeze-out hypersurface, we can

construct the correlation functions for the variables

qout, qside, and qlong [33, 34], C(qout, qside, qlong), based

on Eqs. (40)–(45), by summing over k1 and k2 for

each (qout, qside, qlong) bin. Then, we extract the HBT

radii Rout, Rside, and Rlong by fitting the correlation

function with the parametrized formula
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C(qout, qside, qlong)

= 1+λe−q2
outR2

out−q2
sideR2

side−q2
longR2

long . (49)

Figure 5 shows the HBT radii Rout, Rside, Rlong,

and λ parameter as functions of the transverse mo-

mentum of the pion pair, kT = |k1T + k2T|/2, for

the viscous and ideal hydrodynamic sources with the

freeze-out temperatures 0.7 and 0.8 Tc. For the vis-

cous sources, the parameter Cs is taken to be 2. For

comparison, the RHIC experimental HBT results [46,

47] are also shown in the figure. It can be seen that

the HBT radii for the lower freeze-out temperature

are larger than those for the higher Tf . The vis-

cosity increases the transverse HBT radii Rout and

Rside for the the source with the lower freeze-out

temperature. By comparing with the experimental

results, we find that the results of the longitudinal

HBT radius Rlong for the hydrodynamic sources with

Fig. 5. (color online) The two-pion HBT results

for the viscous (Cs = 2) and ideal hydrody-

namic sources with Tf = 0.7Tc and Tf =0.8Tc.

The experimental data are from the PHENIX

[46] and STAR [47] collaborations.

Fig. 6. (color online) The two-pion HBT re-

sults for the viscous (Cs = 2) and ideal hydro-

dynamic sources with ε0 = 20 GeV/fm3 and

ε0 = 40 GeV/fm3. The freeze-out temperature

is 0.8Tc. The experimental data are from the

PHENIX [46] and STAR [47] collaborations.

Tf = 0.8Tc agree well with the experimental data.

It indicates that the Bjorken scaling hypothesis is

suitable in the description of the source longitudi-

nal evolution. In our calculations, the width of the

Bjorken rapidity plateau is taken to be 1.3. On can

also see that the transverse HBT radii Rout and Rside

as functions of kT are flat for both of the two freeze-

out temperatures. However, the ratio Rout/Rside de-

creases to about one for the higher Tf . We did not

consider the source coherence and the Coulomb in-

teraction between the pions, so the λ results of the

hydrodynamical sources are about unit.

In Table 1 we list the HBT results for the ideal

and viscous hydrodynamical sources with Tf = 0.8Tc.

Here the results of the ‘visc fluid 1’ and ‘visc fluid 2’

are for the viscous sources with only shear viscosity

for Cs = 1 and Cs = 2. The results of the ‘visc fluid



418 Chinese Physics C (HEP & NP) Vol. 36

Table 1. The HBT results for the ideal and viscous hydrodynamic sources with Tf = 0.8Tc .

kT/(GeV/c) sources Rout/fm Rside/fm Rlong/fm Rout/Rside λ

0.24 ideal fluid 4.69 ± 0.04 5.01 ± 0.04 5.89 ± 0.06 0.94 ± 0.02 0.91 ± 0.01

visc fluid 1 4.72 ± 0.04 4.95 ± 0.04 5.96 ± 0.06 0.95 ± 0.02 0.92 ± 0.01

visc fluid 2 4.80 ± 0.04 4.99 ± 0.04 5.98 ± 0.06 0.96 ± 0.02 0.93 ± 0.01

visc fluid 3 4.82 ± 0.04 4.96 ± 0.05 6.00 ± 0.06 0.97 ± 0.02 0.92 ± 0.01

visc fluid 4 4.89 ± 0.04 5.02 ± 0.05 6.16 ± 0.06 0.97 ± 0.02 0.93 ± 0.01

0.39 ideal fluid 4.68 ± 0.06 4.73 ± 0.07 5.06 ± 0.08 0.99 ± 0.03 0.93 ± 0.02

visc fluid 1 4.63 ± 0.06 4.77 ± 0.07 4.91 ± 0.08 0.97 ± 0.03 0.92 ± 0.02

visc fluid 2 4.66 ± 0.06 4.76 ± 0.06 4.85 ± 0.07 0.98 ± 0.03 0.91 ± 0.02

visc fluid 3 4.67 ± 0.06 4.79 ± 0.07 4.95 ± 0.08 0.97 ± 0.03 0.91 ± 0.02

visc fluid 4 4.77 ± 0.07 4.81 ± 0.07 5.09 ± 0.08 0.99 ± 0.03 0.90 ± 0.02

0.55 ideal fluid 4.46 ± 0.08 4.51 ± 0.08 4.38 ± 0.08 0.99 ± 0.03 0.95 ± 0.02

visc fluid 1 4.45 ± 0.08 4.48 ± 0.08 4.28 ± 0.08 0.99 ± 0.04 0.95 ± 0.02

visc fluid 2 4.49 ± 0.08 4.52 ± 0.08 4.17 ± 0.08 0.99 ± 0.04 0.94 ± 0.02

visc fluid 3 4.49 ± 0.08 4.63 ± 0.09 4.40 ± 0.09 0.97 ± 0.04 0.90 ± 0.03

visc fluid 4 4.52 ± 0.08 4.60 ± 0.09 4.48 ± 0.09 0.98 ± 0.04 0.92 ± 0.03

0.70 ideal fluid 4.25 ± 0.09 4.51 ± 0.10 3.88 ± 0.09 0.94 ± 0.04 0.98 ± 0.03

visc fluid 1 4.23 ± 0.09 4.56 ± 0.10 3.92 ± 0.09 0.93 ± 0.04 0.99 ± 0.03

visc fluid 2 4.23 ± 0.09 4.59 ± 0.10 3.78 ± 0.09 0.92 ± 0.04 0.95 ± 0.03

visc fluid 3 4.26 ± 0.10 4.56 ± 0.11 3.91 ± 0.10 0.93 ± 0.04 0.95 ± 0.03

visc fluid 4 4.30 ± 0.10 4.67 ± 0.11 3.89 ± 0.10 0.92 ± 0.04 0.94 ± 0.03

0.84 ideal fluid 4.23 ± 0.12 4.42 ± 0.13 3.37 ± 0.10 0.96 ± 0.05 0.97 ± 0.04

visc fluid 1 4.24 ± 0.12 4.46 ± 0.12 3.43 ± 0.10 0.95 ± 0.05 0.97 ± 0.04

visc fluid 2 4.32 ± 0.12 4.40 ± 0.12 3.59 ± 0.10 0.98 ± 0.05 1.01 ± 0.04

visc fluid 3 4.44 ± 0.13 4.48 ± 0.13 3.60 ± 0.11 0.99 ± 0.06 1.02 ± 0.04

visc fluid 4 4.77 ± 0.14 4.85 ± 0.15 3.67 ± 0.12 0.98 ± 0.06 1.05 ± 0.05

3’ and ‘visc fluid 4’ are for the viscous sources with

both the shear and bulk viscosities for Cs = 1 and

Cs = 2. One can see that for the higher freeze-out

temperature, the viscosity effect on the HBT results

for the only shear viscous sources are negligible, and

the viscosity effect for the source with both the shear

and bulk viscosities may let the HBT radii be a little

larger than those of the ideal fluid source.

Further, we examine the HBT radii for the vis-

cous hydrodynamical sources with lower initial energy

density (ε0 = 20 GeV/fm3) and higher initial energy

density (ε0 = 40 GeV/fm3). The results are shown in

Fig. 6, where the freeze-out temperature is 0.8Tc. It

can be seen that the results of the transverse HBT

radius Rside for the higher initial energy density are

larger than those for the lower initial energy density.

This leads to the smaller values of the ratio Rout/Rside

for the source with higher ε0. The longitudinal HBT

radius Rlong also increases with the initial energy den-

sity. However, the transverse HBT radii as functions

of the transverse momentum kT are more flat than

those of the experimental data, both for the lower

and higher initial energy density sources.

5 Conclusion

Based on the Israel-Stewart second-order theory

of relativistic dissipative fluid dynamics [23], we inves-

tigate the space-time evolution of the viscous hydro-

dynamics with the Bjorken cylinder geometry. The

EOS used in the hydrodynamic calculations combines

hadron resonance gas at low temperatures with lat-

tice QCD at high temperatures [43]. We consider

both the shear and bulk viscosities in the hydrody-

namic evolution of the dissipative fluids. By perform-

ing the two-pion HBT interferometry to the viscous

and ideal hydrodynamic sources, we investigate the

effects of the viscosities on the two-pion HBT inter-

ferometry results.

For a dissipative fluid there is not only shear vis-

cosity but also bulk viscosity. For the sQGP pro-

duced in relativistic heavy ion collisions [1], the ratio

of the shear viscosity to the entropy density satisfies

η̃/s>
∼

1/4π [37–39], and the bulk viscosity ζ̃ is pro-

portional to η̃(v2
s −1/3) [17, 40–42]. Our calculations

indicate that the viscosity effect on the two-pion HBT
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results is small if only the shear viscosity is con-

sidered. The bulk viscosity leads to a larger trans-

verse freeze-out configuration of the pion sources, and

therefore increases the transverse HBT radii. This ef-

fect is larger if the source has a lower freeze-out tem-

perature. In the present paper we took the relaxation

time τπ =
6η̃

sT
[6, 10, 12, 15, 23] and τΠ = τπ [17, 18],

and used an uniform formula of the shear viscosities

for both the QGP and hadronic phases. We find that

there are not observable influences on the viscosity ef-

fects on HBT results for the τπ and τΠ values within

reasonable ranges. In Ref. [18] different viscosities for

the QGP and hadronic phases are taken into account

in the analyses of transverse momentum spectra, el-

liptic flow, and HBT interferometry. Further inves-

tigations of the effects of shear and bulk viscosities

on the HBT interferometry for more realistic viscous

pion-emitting sources in relativistic heavy ion colli-

sions are of great interest in the future.

In our model the Bjorken longitudinal scaling hy-

pothesis [25] is adopted, which is an approximation

for the heavy ion collisions at very high energies.

Our results indicate that the longitudinal HBT ra-

dius for the Bjorken cylinder hydrodynamic source

agrees well with the RHIC HBT results. However, the

transverse HBT radii as functions of the pair trans-

verse momentum for our Bjorken cylinder sources are

flatter than those of the experimental data. In order

to explain the RHIC HBT results, various models

without viscosity were proposed [48–53]. Recently,

the hydrodynamic source model including the ini-

tial collective flow, a stiffer EOS, and viscosity was

proposed [54] to explain the RHIC HBT results. A

comprehensive examination of the effects in these

models on HBT interferometry and other observables

(e.g. particle momentum distributions, elliptic flow,

etc.) requires considerable effort.

The authors would like to thank Dr. S. Khakshur-

nia for helpful discussions.

Appendix A

Derivation for relaxation equations

Here we give the derivations of Eqs. (24)–(26) from Eq. (22) in detail. For the Bjorken cylinder and at z = 0, we

have

π
µν =




γ2v2
ρτρρ γ2vρτρρ 0 0

γ2vρτρρ γ2τρρ 0 0

0 0 ρ−2τφφ 0

0 0 0 τ−2τηη




, (A1)

παβ = gαµ π
µνgνβ =




1 0 0 0

0 −1 0 0

0 0 −ρ2 0

0 0 0 −τ 2







γ2v2
ρτρρ γ2vρτρρ 0 0

γ2vρτρρ γ2τρρ 0 0

0 0 ρ−2τφφ 0

0 0 0 τ−2τηη







1 0 0 0

0 −1 0 0

0 0 −ρ2 0

0 0 0 −τ 2




=




γ2v2
ρτρρ γ2vρτρρ 0 0

−γ2vρτρρ
−γ2τρρ 0 0

0 0 −τφφ 0

0 0 0 −τηη







1 0 0 0

0 −1 0 0

0 0 −ρ2 0

0 0 0 −τ 2




=




γ2v2
ρτρρ

−γ2vρτρρ 0 0

−γ2vρτρρ γ2τρρ 0 0

0 0 ρ2τφφ 0

0 0 0 τ 2τηη




, (A2)
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and

π
µ
β = gµα

παβ =




1 0 0 0

0 −1 0 0

0 0 −1/ρ2 0

0 0 0 −1/τ 2







γ2v2
ρτρρ

−γ2vρτρρ 0 0

−γ2vρτρρ γ2τρρ 0 0

0 0 ρ2τφφ 0

0 0 0 τ 2τηη




=




γ2v2
ρτρρ

−γ2vρτρρ 0 0

γ2vρτρρ
−γ2τρρ 0 0

0 0 −τφφ 0

0 0 0 −τηη




. (A3)

A.1 The first term of Eq. (22)

The first term of Eq. (22) can be expanded as

τπ∆µα∆νβDπαβ = τπ(gµα
−uµuα)(gνβ

−uνuβ)Dπαβ

= τπgµαgνβDπαβ −τπgµαuνuβDπαβ

−τπgνβuµuαDπαβ

+τπuµuαuνuβDπαβ . (A4)

With the relations Dgκβ = Dgκβ = 0 and the orthogonal-

ity uµπ
µν = uµ

πµν = 0, we have

gµαgνβDπαβ = gνβ(Dgµα
παβ) = gνβDπ

µ
β , (A5)

gµαuνuβDπαβ = gµαuν [(Duβ
παβ)− (Duβ)παβ]

= −gµαuν(Duβ)παβ , (A6)

gνβuµuαDπαβ = gνβuµ[(Duα
παβ)− (Duα)παβ]

= −gνβuµ(Duα)παβ , (A7)

uµuνuαuβDπαβ = uµuν [uα(Duβ
παβ)

−(Duβ)uα
παβ] = 0 . (A8)

So, the first term of Eq. (22) can be expressed as

τπ∆µα∆νβDπαβ = τπ(gνβDπ
µ
β + Iµν ) , (A9)

where

Iµν
≡ gµαuν(Duβ)παβ +gνβuµ(Duα)παβ . (A10)

For the azimuth-symmetric Bjorken cylinder, uφ = 0 and

uη = 0 at z = 0, so Iφφ = Iηη = 0.

Therefore, for µ = ν = ρ we have

∆µα∆νβDπαβ = gρβDπ
ρ
β + Iρρ =Dγ2τρρ

+Iρρ = γ3

(
∂

∂τ
τρρ +vρ

∂
∂ρ

τρρ

)

+2γ(Dγ)τρρ +Iρρ, (A11)

where

Iρρ = gραuρ(Duβ)παβ +gρβuρ(Duα)παβ

= gραuρ(Duβ)παβ +gραuρ(Duβ)πβα

= 2gραuρ(Duβ)παβ =2gρρuρ(Duβ)πρβ

= −2uρ[(Dγ)πρτ +(Dγvρ)πρρ]

= −2γvρ

[
− (Dγ)γ2vρτρρ +(Dγvρ)γ

2τρρ
]

= −2γ4vρτρρ(Dvρ). (A12)

With the relations,

γ =
1√

1−v2
ρ

, vρ
∂(γvρ)

∂τ
=

∂γ

∂τ
, vρ

∂(γvρ)

∂ρ
=

∂γ

∂ρ
, (A13)

we have

Iρρ = −2γ3τρρ[vρ(Dγvρ)−v2
ρ(Dγ)]

= −2γ3τρρ

[
vργ

(
∂(γvρ)

∂τ
+vρ

∂(γvρ)

∂ρ

)
−v2

ρ(Dγ)

]

= −2γ3τρρ

[
γ

(
∂γ

∂τ
+vρ

∂γ

∂ρ

)
−v2

ρ(Dγ)

]

= −2γτρρDγ, (A14)

and

∆µα∆νβDπαβ = γ3

(
∂

∂τ
τρρ +vρ

∂
∂ρ

τρρ

)
, (A15)

for µ = ν = ρ.

For µ = ν = φ and µ = ν = η, we have

∆µα∆νβDπαβ =
1

ρ2
Dτφφ =

γ

ρ2

(
∂

∂τ
τφφ +vρ

∂
∂ρ

τφφ

)
,

(A16)
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and

∆µα∆νβDπαβ =
1

τ 2
Dτφφ =

γ

τ 2

(
∂

∂τ
τηη +vρ

∂
∂ρ

τηη

)
.

(A17)

A.2 The third term of Eq. (22)

For the third term of Eq. (22), we have

∇
〈µuν〉

≡ ∇
(µuν)

−
1

3
∆µνdλuλ

=

[
∇

µuν +∇
νuµ

2

]
−

1

3
∆µνΘ. (A18)

With the relations

vρ
∂(γvρ)

∂τ
=

∂γ

∂τ
,

∂(γvρ)

∂ρ
=

1

vρ

∂γ

∂ρ
, (A19)

we have

∇
ρuρ =−γ2

[
∂γ

∂τ
+

∂(γvρ)

∂ρ

]
≡−γ2θ , (A20)

and

∇
〈ρuρ〉 = γ2

(
−θ+

1

3
Θ

)
= γ2σρρ , (A21)

where

θ =
∂γ

∂τ
+

∂(γ vρ)

∂ρ
. (A22)

Similarly, we have

∇
φuφ =

1

ρ2

(
−γvρ

ρ

)
, (A23)

∇
〈φuφ〉 =

1

ρ2

(
−γvρ

ρ
+

1

3
Θ

)
=

1

ρ2
σφφ , (A24)

∇
ηuη =

1

τ 2

(
−γ

τ

)
, (A25)

∇
〈ηuη〉 =

1

τ 2

(
−γ

τ
+

1

3
Θ

)
=

1

τ 2
σηη , (A26)

∇
τuτ = −γ2v2

ρ

(
∂γ

∂τ
+

∂γv2
ρ

∂ρ

)
=−γ2v2

ρθ , (A27)

∇
〈τuτ〉 = γ2v2

ρ

(
−θ+

1

3
Θ

)
= γ2v2

ρσττ , (A28)

∇
τuρ = ∇

ρuτ =−γ2vρθ , (A29)

∇
〈τuρ〉 = ∇

〈ρuτ〉 = γ2vρ

(
−θ+

1

3
Θ

)

= γ2vρστρ . (A30)

A.3 The last term of Eq. (22)

The last term of Eq. (22) can be written as

η̃ T dλ

(
τπuλ

η̃
T

)
= η̃ T

[
τπ

η̃ T
dλuλ +uλdλ

(
τπ

η̃ T

)]

= τπΘ+ η̃ TD

(
τπ

η̃ T

)
. (A31)

Now, one can obtain Eqs. (24)–(26) from the above

derivations.
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