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Azimuthal distributions of radial momentum and
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Abstract: Azimuthal distributions of radial (transverse) momentum, mean radial momentum, and mean

radial velocity of final-state particles are suggested for relativistic heavy ion collisions. Using the AMPT

transport model with string melting, the distributions of Au+Au collisions at 200 GeV are presented and

studied. It is demonstrated that the distribution of total radial momentum is more sensitive to the anisotropic

expansion, as the anisotropies of final-state particles and their associated transverse momentums are both

counted in the measurement. The mean radial velocity distribution is compared with the radial flow velocity.

The thermal motion contributes an isotropic constant to the mean radial velocity.
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1 Introduction

One of the main goals of current relativistic heavy

ion collisions is to understand the properties of quark-

gluon plasma (QGP) [1]. It is well known that

one important character of this formed matter is an

anisotropic collective flow. In non-central collisions,

the overlap area of two incident nuclei is an almond

shape in the transverse coordinate plane [2]. This

initial geometric asymmetry leads to a larger den-

sity gradient along the short axis. It in turn pushes

the formed system to expand anisotropically, i.e.,

large collective flow velocity in the short side direc-

tion, which is perpendicular to the anisotropy in co-

ordinate space. Therefore, the measurement of the

anisotropic distribution of final-state particles should

provide valuable information about the system evo-

lution [2, 3].

Conventionally, the azimuthal distribution of the

multiplicity of final-state particles is presented. Its

anisotropy is quantified by the coefficients of the

Fourier expansion of the distribution [4]

dN

dφ
∝ 1+

∞
∑

n=1

2vn(N)cos(nφ), (1)

where φ is the azimuthal angle between the transverse

momentum of the particle and the reaction plane.

The Fourier coefficients are evaluated by,

vn(N) = 〈cos(nφ)〉, (2)

where 〈· · · 〉 is an average over all particles in all

events, and vn(N) refers to the anisotropy coefficient

of the azimuthal multiplicity distribution. The sec-

ond harmonic coefficient v2(N) is the so-called elliptic

flow parameter. It presents the anisotropy of the col-

liding system and has the biggest ellipticity at high

energy heavy ion collisions [5, 6]. In addition, the

azimuthal asymmetry distribution of energy loss and

its Fourier expansion coefficients are also studied [7].

However, the multiplicity distribution only counts

the number of particles emitted at a certain azimuthal

angle. The expansion of the system results in not only
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the anisotropy of multiplicity distribution but also

their associate radial (transverse) momentum. The

total radial momenta at a given azimuthal angle is

the combination of them. Therefore, the azimuthal

distribution of radial momentum should be a more

sensitive measure of the anisotropic expansion, which

has not been directly explored before.

In addition to the radial momentum, the radial

flow velocity is another interesting and important

quantity. It directly relates to the equation of state

[8] and shear viscous interactions. For an ideal flow,

the radial flow velocity is isotropic. While, if there

are shear interactions, the radial flow velocity will be

different from layer to layer. In hydrodynamics, the

shear viscous interactions are supposed to be propor-

tional to the gradient of flow velocity [9]. The pro-

portional constant is defined as shear viscosity. The

gradient of radial flow velocity along the azimuthal

direction is directly related to the shear viscous in-

teractions.

Theoretically, the radial flow velocity is a param-

eter in model calculations. It is usually obtained by

fitting the spectrum of transverse momentum [10].

Recently, it is further suggested to extract the radial

flow velocity from photon and dilepton spectra [11].

Experimentally, only the radial velocity of final-

state particles (~v ) is measurable. It should be a com-

bination of the flow velocities (~vflow) and the random

thermal motion (~vth) [12]. How to extract the random

thermal motion from the radial velocity of final-state

particles and get the radial flow velocity is not clear.

This is why the radial velocity of final-state particles

has not been explored for a long time. It is inter-

esting to see how the radial velocity of a final-state

particle relates to the radial flow velocity. Therefore,

we further suggest the measurement of the azimuthal

distribution of the mean radial velocity of final-state

particles.

In the second section of this article, we will give

the definitions of the suggested azimuthal distribu-

tions of radial momentum and velocity of final-state

particles, and the corresponding anisotropic param-

eters. In the third section, using the samples gener-

ated using AMPT with the string melting model, we

show the azimuthal distributions of radial momen-

tum and the centrality dependence of its anisotropic

parameters. The results are compared with those

of the corresponding azimuthal multiplicity distribu-

tion. In the fourth section, the azimuthal distribu-

tions of mean radial velocity at different centralities

are presented, and compared with those given by the

anisotropic blast-wave model [13–15]. Finally, a sum-

mary and the conclusion are presented.

2 Azimuthal distributions of radial

momentum and velocity

As indicated, the initial anisotropy in coordi-

nate space in non-central collisions makes the formed

system expand in a perpendicular almond shape in

momentum space. The final state particles move

outward anisotropically. Both the particle density

and the associated momentum behaves anisotropi-

cally during the expansion. The distribution of total

transverse momentum at the different azimuthal di-

rections should be a good measurement for both of

these two effects. The total transverse momentum in

the mth azimuthal bin can be defined as

〈Pt(φm)〉=
1

Nevent

Nevent
∑

j=1

(

Nm
∑

i=1

pt,i(φm)

)

, (3)

where pt,i is the transverse momentum of the ith par-

ticle, Nm is the total number of particles, and 〈· · ·〉
denotes the average over all events.

In order to see the contributions of radial momen-

tum in particular, the mean radial momentum in the

mth azimuthal bin can be defined accordingly as,

〈〈pt(φm)〉〉=
1

Nevent

Nevent
∑

j=1

(

1

Nm

Nm
∑

i=1

pt,i(φm)

)

. (4)

Here, the averages 〈〈· · ·〉〉 are over all particles in the

mth angle bin and all events. It records only the

contributions from the transverse momentum of final

particles, the multiplicity effect is canceled by the av-

erage over all particles.

The anisotropic parameters of all those azimuthal

distributions can be directly obtained from their

Fourier expansions, respectively,

d〈Pt〉
dφ

∝ 1+

∞
∑

n=1

2vn(〈Pt〉)cos(nφ), (5)

and

d〈〈pt〉〉
dφ

∝ 1+

∞
∑

n=1

2vn(〈〈pt〉〉)cos(nφ). (6)

d〈Pt〉
dφ

and
d〈〈pt〉〉

dφ
are the azimuthal distribution

functions of total radial momentum and mean ra-

dial momentum. vn(〈Pt〉) and vn(〈〈pt〉〉) are their

anisotropic parameters, respectively.

Considering the relativistic effect, the transverse
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(radial) velocity of the ith particle can be written as,

vt,i =
pt,i

mt

=
pt,i

√

m2
0,i +p2

t,i

, (7)

where pt,i and mt,i are the transverse momentum and

mass of the ith particle, respectively. m0,i is the mass

of the ith particle in the rest frame. The radial ve-

locity fluctuates from particle to particle. In a given

azimuthal direction, the mean radial velocity can be

considered as a good approximation. Analogously,

the azimuthal distribution of mean radial velocity can

be defined as

〈〈vt(φm)〉〉=
1

Nevent

Nevent
∑

j=1

(

1

Nm

Nm
∑

i=1

vt,i(φm)

)

. (8)

Here, the average is over all the particles in the mth

bin and events.

The behavior of those suggested observables

should provide more information about anisotropic

expansion. In the following, as a demonstration, we

use the generated AMPT sample with string melt-

ing [16, 17]. A partonic phase is implemented in

the model and the elliptic flow data from RHIC are

well reproduced by it [18]. For Au+Au at
√

sNN =

200 GeV, about 1.6 million minimum bias events are

generated.

3 Azimuthal distributions of radial

momentum in the AMPT model

The azimuthal distributions of radial momentum,

mean radial momentum, and multiplicity are pre-

sented in Fig. 1(a), (b) and (c), respectively. Error

is statistical only and smaller than the size of the

points. The particles within rapidity range y ∈ [−5,5]

are counted. These cases are kept in all the following

figures.

Fig. 1. The azimuthal distributions of (a) radial momentum, (b) mean radial momentum, and (c) multiplicity,

for the sample of Au+Au collisions at
√

sNN =200 GeV generated by using AMPT with string melting.

We can see from Fig. 1 that all the observables as

a function of the azimuthal angle show an anisotropic

shape, cos(2φ). It is the same as multiplicity distri-

bution, the biggest anisotropy of mean radial momen-

tum distribution appears in the in-plane direction, as

shown in Fig. 1(b). It indicates that not only the

particle density, but also the associated pt are larger

in the in-plane direction. It is interesting to see if the

data at RHIC show the same character as the model.

In order to compare the anisotropy effects of these

three distributions qualitatively, the centrality depen-

dence of the corresponding anisotropic parameter, v2,

is presented in Fig. 2. The anisotropy parameter v2

from different measurements shows similar central-

ity dependencies. At each centrality, the anisotropy

parameter of the multiplicity distribution, v2(N), is

larger than that of the mean radial momentum dis-

tribution v2(〈〈pt〉〉). The anisotropy parameter of the

radial momentum, v2(〈Pt〉), is the largest one among

the three variables. It confirms the anisotropy of the

radial momentum distribution including the contribu-

tions from a number of particles and their associated

transverse momentum. Therefore, the azimuthal dis-

tribution of radial momentum gives a full count of

anisotropic expansion.

As we know, the anisotropy parameters v2 also

depend on pt, and it increases with pt when pt <

2 GeV/c [19]. The pt dependence of the anisotropy

parameters of radial momentum and multiplicity dis-

tributions are presented in Fig. 3. The anisotropy

parameter increases with pt when pt < 2 GeV/c, the

same as the data shown. We can also see that the v2
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Fig. 2. (color online)The centrality dependence

of elliptic flow parameters deduced from the

azimuthal distributions of radial momentum

(solid red stars), mean radial momentum

(solid black cycles), and multiplicity (solid

blue triangles) for the sample of Au+Au colli-

sions at
√

sNN = 200 GeV generated by using

AMPT with string melting.

Fig. 3. (color online) pt dependence of the

anisot-ropic parameter of azimuthal distribu-

tions of radial momentum (red solid stars),

and multiplicity (black triangles) for the sam-

ple of Au+Au collisions at
√

sNN = 200 GeV

generated by using AMPT with string melt-

ing.

slightly decreases with pt when pt > 2 GeV/c, and it

may be contributed by the hard components [20]. At

a fixed pt bin, the anisotropy of the radial momen-

tum is almost the same as that of multiplicity. This

is because the pt of all particles in a small given pt

bin are almost the same. The anisotropy of radial

momentum is dominated by that of multiplicity.

4 Azimuthal distributions of radial ve-

locity in the AMPT model

The azimuthal distribution of mean radial veloc-

ity is presented in Fig. 4(a). It is a period function

and can be well fitted by

〈〈Vt〉〉= V0 +Va cos(2φ). (9)

It is the same mode as the flow velocity,

β = β0 +βa cos(2φ), (10)

which is usually assumed in the blast-wave model in

counting the anisotropic expansion [13, 15].

In order to see the contribution of random ther-

mal motion, the mean radial velocity of final-state

particles in three typical centralities are presented

in Fig. 4(b). In mid-central (30%–40%) and periph-

eral (60%–70%) collisions, the mean radial velocities

are anisotropic, while it becomes an approximately

isotropic constant in central (0–5%) collisions. This

suggests that the interactions between azimuthal lay-

ers are negligible in central collisions, which is consis-

tent with the expectations of viscous hydrodynamics

[21, 22]. It also shows that the thermal motion only

contributes an isotropic constant to the mean radial

velocity.

As we know, for a system with a fixed tempera-

ture, the lighter particle has higher thermal velocity.

In order to test if the V0 is mainly caused by thermal

motion, the mean radial velocities of three different

particles and their corresponding fitting parameters

are presented in Fig. 5. Indeed, the lightest pion has

the highest V0, while the heaviest proton has the low-

est one.

To see the anisotropy effect alone, we can calcu-

late the gradient of mean radial velocity along the az-

imuthal direction. In this case, the constant part of

the mean radial velocity is canceled. Fig. 4(c) shows

the corresponding gradients of Fig. 4(b). In central

collisions, it is approximately zero. The amplitudes in

mid-central collisions are larger than those in periph-

eral collisions. These results show that there is almost

no gradient of mean radial velocity in central colli-

sions and becomes largest in mid-central collisions.

Conventionally, the parameters of flow velocity

Eq. (10), β0 and βa, are obtained by fitting the spec-

tra of the produced particles. Here, we choose the

spectra of pion, proton and kaon from the AMPT

string melting model and get, β = 0.35+0.04cos(2φ).
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Fig. 4. (color online) The azimuthal distributions of mean radial velocities of minimum bias sample (a) and

the samples of three different centralities (b), and the azimuthal gradients of (b) in (c).

Fig. 5. (color online)The azimuthal distribu-

tions of mean radial velocity of charged pion,

charged kaon and (anti)proton. The lines are

fitted by Eq. (8), and the corresponding fit-

ted parameters are listed. The errors of the

parameters are less than 1% relative values.

Due to thermal motion, the β0 is not directly com-

parable with V0. However, Va ∼ 0.01 from the corre-

sponding mean radial velocity may be a good approx-

imation of flow velocity estimated by the blast-wave

model, where βa ∼ 0.04.

Certainly, the flow velocities obtained from di-

rectly measured radial velocity and from the spec-

trum fitting based on the blast-wave model should be

better as compared with the experimental data sam-

ple, where the spectrum is precisely presented. The

comparison of these two methods will lead to a better

understanding of the flow velocity.

5 Summary and conclusion

In the paper, we suggest the studies for azimuthal

distributions of radial momentum, mean radial mo-

mentum, and mean radial velocity in relativistic

heavy heavy ion collisions.

Using the sample of Au+Au collisions at
√

sNN =

200 GeV produced by a multiphase transport model

(AMPT), we find that the azimuthal distribution

of radial transverse momentum indeed counts the

anisotropy of final-state particles and their associ-

ated transverse momenta. Thus it presents a full de-

scription of anisotropic expansion at various centrali-

ties. The azimuthal distribution of radial momentum

shows the same anisotropy as that of the multiplicity

distribution in a small pt bin only.

The azimuthal distribution of mean radial veloc-

ity is shown to be the same mode as the flow veloc-

ity that is usually assumed in the generalized blast-

wave model. Its centrality dependency indicates that

thermal motion only contributes an isotropic con-

stant to mean radial velocity. Its particle mass de-

pendency further shows that the mass ordering of

isotropic mean radial velocity is the same as ther-

mal motion. The anisotropic mean radial velocity is

approximated to flow velocity, which is obtained from

fitting the spectrum of corresponding particles based

on the blast-wave model.

Therefore, it is interesting to measure the az-

imuthal distributions of radial momentum, mean ra-

dial momentum, and mean radial velocity in current

relativistic heavy ion collisions.
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