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A tentative method for assigning the configuration

of a triaxial nuclei in TRS *
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Abstract: A tentative method based on the principle of minimum energy is put forward for assigning the

reasonable configuration of a triaxial nucleus in TRS. This method is proved by the TSD of 167Lu nucleus that

has been calculated previously by TRS.
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1 Introduction

The investigation of the shape of atomic nuclei has

been an interesting topic in nuclear structure physics

for many years. Only nuclei with magic proton or

neutron numbers, corresponding to the closed shells,

are spherical at low excitation energy, while the ma-

jority of nuclei are deformed and many of them can be

described based on the axial symmetry. The triaxial

motion is a fundamental problem in nuclear physics

and plays an important role in many nuclear phenom-

ena [1]. For example, the triaxiality has been used to

explain the signature splitting in rotational bands in

the A=130 region [2], the possible chiral band dou-

blets in some odd-odd nuclei [3, 4] and the unusually

fast decay from isomers, e.g. in 176W [5]. The best di-

rect evidence for the triaxiality is the discovery of the

wobbling mode in a nuclear system at high spin. The

crucial experiments providing clear evidence for the

triaxial rotation are the discoveries of the first- and

second-phonon wobbling bands in 163Lu [6, 7]. The

wobbling mode provides unique evidence for a sta-

ble triaxial shape, and thus these wobbling superde-

formed bands were identified as the triaxial superde-

formed bands (TSD). The confirmations for the TSD

bands in the mass region around 163Lu are the dis-

coveries of the wobbling bands in 161Lu [8], 165Lu [9,

10] and 167Lu [11].

In theory, the potential energy surface was calcu-

lated by some different methods, e.g. the ultimate

cranker (UC) code [12, 13] and the total routhian

surface (TRS). In this paper, the configuration-

dependent TRS approach is employed to calculate the

total potential energy consisting of the core energy

and quasiparticles (qp) energies. However, we will

take a newly tentative method based on the principle

of minimum energy to assign the configuration cor-

responding to the triaxial deformation of an atomic

nucleus.

2 Brief description of the mode

The total energy in the rotating frame, as a func-

tion of deformations ε2, γ and ε4, for a given quasi-

particle configuration (cf) may be calculated in the

one-dimensional cranking approximation,

Etotal(ω) =ELD +Ecorr(ω= 0)+Erot(ω)+
∑

i∈cf

eω

i , (1)

Received 16 December 2011

* Supported by National Basic Research Program of China (2007CB815005), National Natural Science Foundation of China

(11075064, 11165001, 10975051) and Specialized Research Fund for the Doctoral Program of Higher Education of China

(20050183008)

1)E-mail:nmglxw2000@126.com
©2012 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute

of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd



828 Chinese Physics C (HEP & NP) Vol. 36

where ELD is the liquid-drop model energy [14], Ecorr

is the quantal effect correction to the energy, which

includes both the shell correction and the pairing cor-

rection [15]. The collective rotational energy Erot is

calculated microscopically as the difference between

the expectation values of the cranking Hamiltonian

Hω with and without rotation by using the wave func-

tion of the qusiparticle vacuum [16, 17]

Erot(ω) = 〈ψvac(ω 6= 0) |Hω| ψvac(ω 6= 0)〉

−〈ψvac(ω= 0) |Hω| ψvac(ω= 0)〉 , (2)

where the cranking Hamiltonian Hω describes quasi-

particles moving in a quadrupolely deformed poten-

tial rotating around a principle axis, with a frequency

ω and is written as

Hω =Hsp(ε2,γ,ε4)−λN+∆(P+ +P−)−ωJx, (3)

where Hsp is the deformed single particle Nilsson

Hamiltonian [18] depending on the deformation pa-

rameters, and having the modified harmonic oscil-

lator(MHO) potential containing a proper spin-orbit

force, and the Nilsson parameter set is taken from

Ref. [19]. The parameters ε2, γ and ε4, describe

the elongation deformation, triaxial deformation and

hexadecapole deformation, respectively. The second

term in Eq. (3) is the chemical potential, the third

term is the pairing interaction, and the last term

stands for the Coriolis and centrifugal forces.

The Fermi level λ is determined by the particle

number in the BCS approximation. By considering

the anti-pairing effect of rotation, the pairing gap pa-

rameters for both protons and neutrons are evaluated

empirically with ∆=0.9∆o.e where ∆o.e is the experi-

mental odd–even mass difference taken from Ref. [20]

For an approximation, the full dependence of the pair-

ing gap on rotation is not considered in the TRS cal-

culations. According to the checking calculation, the

location of the TSD minimum in the TRS is not sen-

sitive to the reasonable choice of the reduction factor

of the pairing gap parameters.

The equilibrium deformation of a nucleus can

be obtained by minimizing the total routhian en-

ergy Etotal, calculated by Eq. (1), with respect to

the deformation parameters ε2, γ and ε4. In the

three-dimensional TRS calculation, the minimiza-

tion procedure includes two steps. First, the three-

dimensional total routhian energy Etotal is minimized

with respect to the hexadecapole deformation ε4 for

each deformation point in the (ε2, γ) plane. As a re-

sult, one obtains the equilibrium hexadecapole defor-

mation surface, ε4min(ε2, γ), and the corresponding

new total routhian energy surface,

E′

total(ε2,γ) =Etotal(ε2,γ,ε4min).

Second, we minimize E ′
total(ε2,γ) with respect to the

ε2 and γ to obtain the equilibrium quadrupole defor-

mations, and then it is straightforward to read out the

corresponding equilibrium hexadecapole deformation

by sprawling the ε4min(ε2,γ) surface.

3 The tentative method for assigning

the configuration

In TRS, the total energy of a triaxial nucleus

is calculated under an assured configuration. Usu-

ally, the configuration is chosen according to results

of experiments. The configuration is only described

by L and j quantum numbers of proton or neutron,

whereas this shell contains 2j+1 nucleons for degen-

eracy. It is necessary to know more information about

the configuration. The configuration of a nucleus is

denoted by Nilsson levels, namely [nlzsz]Ω
± where

the “±” symbol stands for the signature and the par-

ity is (−1)n. However, the method that assigns the

configuration of the nucleus is very rough, which sup-

poses quasiparticles take up orbits near or above the

Fermi surface in Nilsson levels.

As is known, the total energy of a stable nucleus is

minimal. The principle of minimum energy is univer-

sal in nuclear regions. For example, nucleons make up

nuclei from the lowest energy level to higher energy

levels under Pauli’s exclusion principle. However, the

pairing protons or neutrons first take up the higher

energy levels which have a greater pairing gap than

lower energy levels according to the shell model of nu-

clei [21]. So we can make a conclusion that the total

energy surface of a metastable nucleus should have a

local minimum. This is the reason that we can get the

quadrupole deformation and the trixial deformation

in TRS.

In this paper, we will consider the relationship

between the minimum energy and the steady state of

the nucleus from an opposite side. If what we got first

is the energy of a number of quasi-particles of differ-

ent configurations, one of these configurations whose

total potential (namely the sum of the energy of its

corresponding quasi-particle and the core energy) is

more prone to be of the local minimum, should be

the optimal configuration option corresponding to the

stable deformation.

We will prove the feasibility of our method by the

configuration of [660]1/2 proton calculated by TRS

accounting for the TSD in 167Lu nucleus [22].
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Each grid point corresponds to the unique ε2, γ

and ε4 in the total potential energy surface. We fix

y-axis variable where y= ε2 sin(γ+30◦), and then the

horizontal abscissa variable where x= ε2 cos(γ+30◦)

is changed continuously. The fixed y-axis variable is

chosen at y=0.3 point, which corresponds to large

deformation points. In order to accurately trace the

configuration we seek, the horizontal abscissa variable

is divided into 100 parts, namely 100 times calcula-

tions are done from 0 to 0.5 in x-axis for 0.05 interval.

In Fig. 1, several dotted-curves show the relation

between the energy of proton configuration and the

deformation of the nucleus for different signatures

in n=6 main shell. The majority energies of pro-

ton quasiparticles for n=6 gradually decrease with

increasing the horizontal abscissa variable x. We can

see a local minimum energy at “A” position in the

routhian energy surface, hence only configurations

that have a minimum near the horizontal abscissa

corresponding “A” position in Fig. 2 contribute to

this local minimum energy based on the principle of

minimum energy. It is shown that the configuration

of [660]1/2− does it in Fig. 1. It is coincident with

the conclusion of previous calculations. In addition,

we have also found two other interesting phenomena.

First, the curve of the energy of [633]7/2− proton

quasiparticle has the same shape as [660]1/2− proton

quasiparticle, and moreover its minimum is deeper.

We think that [633]7/2− may be a candidate config-

uration for the TSD in 167Lu though the position of

its minimum in x-axis is less than [660]1/2−. Second,

[642]5/2− and [624]9/2+ quasi-protons have very sim-

ilar curves of energies where the horizontal abscissa

variable is greater than 0.25. For explanation of this

phenomenon more studies need to be carried out.
167Lu is an odd-even nucleus, so it is considered

one quasiproton configuration for the triaxial defor-

mation nucleus with a low spin state. Some nuclei

have a more complicated configuration with three

or five quasiparticles as a result of breaking of pro-

ton or/and neutron pairs if they populate high spin

states in experiments.

Fig. 1. Curves of energies of proton quasiparticles for n=6.

Fig. 2. Routhian for 167Lu.
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