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Abstract: Electric and magnetic screenings of thermal gluons are studied using the background expansion method in

a gluodynamic model with a gauge invariant dimension-2 gluon condensate at zero momentum. At low temperature,

the electric and magnetic gluons are degenerate. With the increase of temperature, it is found that the electric

and magnetic gluons start to split at a certain temperature T0. The electric screening mass changes rapidly with

temperature when T >T0, and the Polyakov loop expectation value rises sharply around T0 from zero in the vacuum

to a value around 0.8 at a high temperature. This suggests that the color electric deconfinement phase transition is

driven by electric gluons. It is also observed that the magnetic screening mass remains almost the same as its vacuum

value, which manifests that the magnetic gluons remain confined. Both the screening masses and the Polyakov loop

results are qualitatively in agreement with the Lattice calculations.
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1 Introduction

A QCD vacuum is characterized by spontaneous chi-
ral symmetry breaking and color confinement. It is ex-
pected that chiral symmetry can be restored and color
degrees of freedom can be freed at high temperature
and/or density.

The spontaneous breaking of chiral symmetry is well
understood by the dimension-3 quark condensate 〈q̄q〉 [1]
in the vacuum, which is the order parameter in the chiral
limit when the current quark mass is zero m=0, and the
chiral restoration is characterized by the vanishing of the
quark condensate.

The mechanism of confinement still remains a chal-
lenge. The confinement is normally taken as the color
singlet nature of the spectrum. However, the nature of
the color singlet spectrum is not unique for the QCD,
but also holds for gauge-Higgs theories in which the
gauge group is spontaneously broken. From the spe-
cific features of QCD dynamics, the Regge trajectories
of hadrons indicate the string-picture of the hadrons,
and the confinement can be described by the string pic-
ture of the hadrons or the linear potential between two
quarks at large distances, i.e. VQ̄Q(R) = σR with σ as
the string tension. There has been a great effort made
to understand the emergence of the string-like object,

e.g. the Abrikosov flux tubes [2], the dual supercon-
ductor scenario induced by monopole condensation [3],
and the center vortices [4]. In the limits of an infinite
heavy current quark mass, the flux tube never breaks,
and it corresponds to the scenario of “permanent con-
finement”. From the symmetry point of view, when the
current quark mass goes to infinity m →∞, QCD be-
comes the pure gauge SU(3) theory, which is centrally
symmetric in the vacuum. The non-vanishing string ten-
sion corresponds to the area law for the Wilson loop,
vanishing Polyakov lines, perimeter-law for the ’t Hooft
loops or the area-law falloff for the vortex free energy
[5]. The deconfinement phase transition referring to the
“permanent confinement” is characterized by the break-
ing of central symmetry, and the order parameter usually
used is the Polyakov loop expectation value 〈L〉 [6].

In the framework of QCD effective models, there is
still no dynamical model which can describe the break-
ing and restoration of the chiral symmetry, and the con-
finement deconfinement phase transition simultaneously.
The main difficulty in creating an effective QCD model to
include a confinement mechanism lies in that it is hard
to calculate the Polyakov loop analytically. Currently,
popular models used to investigate the chiral and de-
confinement phase transitions are the Polyakov Nambu-
Jona-Lasinio model (PNJL) and Polyakov linear sigma
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model (PLSM) [7]. However, in this kind of models, the
Polyakov loop potential part is not dynamically induced.
A dynamical model for describing confinement as well as
the deconfinement phase transition is still missing.

There has also been a great effort to understand
confinement and deconfinement from low-energy Glu-
odynamics. Various vacuum condensates provide im-
portant information to understand the non-perturbative
dynamics of QCD. For example, the gauge invariant
dimension-4 gluon condensate 〈g2G2〉 has been widely
investigated in both QCD sum rules and lattice calcu-
lations [8–10], and the non-vanishing value of the con-
densate does not signal the breaking of any symmetry
directly, but rather the non-perturbative dynamics of
strongly interacting gluon fields. In the last decade, there
has been a growing interest in dimension-2 gluon conden-
sates 〈g2A2(x)〉 in the SU(Nc) gauge theory [11–22], with
the local dimension-2 operator

A2(x)=

N2

c
−1
∑

a=1

4
∑

µ=1

Aa
µ(x)Aa

µ(x). (1)

The dimension-2 gluon condensate breaks the properties
of gauge invariance, and it has been investigated in var-
ious gauges. For example, the dimension-2 operator A2

gets a special meaning in the Landau gauge [16, 20], in
which the condensate is at an extreme and plays as a
saddle point on its gauge orbit, and a BRST-invariant
mixed gluon-ghost condensate has been introduced in
[17]. Though it is not gauge invariant, the growing in-
terest in the dimension-2 gluon condensate lies in that
it is related to the production of the dynamical gluon
mass, and the possible connection between the minimal
value of the 〈A2〉min and the topological defects (e.g. the
magnetic monopoles [16]). Furthermore, the dimension-2
gluon condensate has a closer relationship with confine-
ment, the dimension-2 gluon condensate yields the UV
corrections Λ2/Q2 in the QCD running coupling constant
αs(Q

2), which leads to the linear potential σsR at short
distances with σs'g2

R〈A
2
µ〉.

By extracting the lattice data of the Polyakov loop,
the work in Ref. [23] shows that to create the correct be-
havior of the Polyakov loop around Tc, the dimension-2
gluon condensate is essential. It is also shown in holo-
graphic QCD models [24, 25], that the dimension-2 gluon
condensate plays an essential role in realizing the lin-
ear heavy quark potential as well as the deconfinement
phase transition. It is of great interest to investigate the
behavior of the dimension-2 gluon condensate at a fi-
nite temperature and its role in the deconfinement phase
transition in a gluodynamic model.

Under the zero temperature case the space-time space
is symmetric under the O(4) rotation, i.e. all Lorentz
components of the gauge field Aµ contribute equally to
the vacuum. In the finite temperature, it is more appro-

priate to divide the gauge boson into time-like (electric)
and space-like (magnetic) components [26, 27]. This can
be viewed as the different components of the overall vari-
able, because the rotational symmetry is broken down to
(approximate) O(3) spatial symmetry as the time direc-
tion deduces to a finite volume with β=1/T . In fact, as
we will show, the electric and magnetic components are
quite nontrivial and behave quite differently at a finite
temperature.

On the other hand, the color screening effect is one
of the main features of the quark-gluon plasma (QGP)
and has been widely investigated in lattice and effective
theories [28–39]. Significant evidence shows that gluon
confinement is not affected by a small (physical) number
of light quarks [33, 38] and the nonperturbative features
of QCD are most probably generated in the gauge sec-
tor. It is therefore reasonable to study the behavior of
screening of gluons at a finite temperature. The Lattice
result shows that the QCD coupling constant strength
near the critical temperature Tc is still of the order of
one [34], and the perturbation theory cannot be applied
in this region. Especially in the regime right above the
critical temperature, the nonperturbative effects are sup-
posed to be important.

Therefore, in this work we extend the pure gluo-
dynamic model with gauge invariant dimension-2 gluon
condensate at zero momentum in the vacuum [40], and
estimate the electric as well as magnetic screening masses
of gluons at a finite temperature. We also investigate the
contribution of the dimension-2 gluon condensate to the
deconfinement phase transition.

This paper is structured as follows. In Section 2 we
introduce the pure gluodynamic model with dimension-
2 gluon condensate in the vacuum, which was developed
by Celenza and Shakin [40]. Then in Section 3, we ex-
tend the gluodynamic model to finite temperature and
define the electric and magnetic screening masses from
the gluon self-energy tensor. We give the numerical re-
sults of the electric and magnetic screening masses as
well as the Polyakov loop expectation value in Section 4
and give the summary in Section 5.

2 The gluodynamic model with a

dimension-2 gluon condensate

In this section, we follow Ref. [40] to introduce the
Celenza-Shakin model which gives an effective action for
a pure gluon system with a dimension-2 gluon conden-
sate. As an overall notation the paper is in the frame-
work of Euclidean space.

The pure gluon part of QCD Lagrangian is described
by

LG=−
1

4
Ga

µνGa
µν , (2)
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with

Ga
µν =∂µAa

ν−∂ν Aa
µ+gfabcAb

µAc
ν . (3)

Motivated by the Nambu–Jona-Lasinio model with
quark-antiquark condensate in the vacuum, which is sim-
ilar to the BCS pairing condensation in the supercon-
ductor, Celenza-Shakin proposed the “pairing” of two
gluon condensates in the vacuum in Ref. [40]. The
Bose-Einstein condensation of two “pairing” gluons at
zero momentum is gauge invariant as demonstrated in
Ref. [40]. The key observation is that the condensation is
determined by its value at zero momentum 〈g2A2(k=0)〉,
which also means that the condensate is coordinate in-
dependent and the coherence length is macroscopically
large. Here we clearly demonstrate why the dimension-
2 gluon condensate is gauge invariant. The local gauge
symmetry is defined as

Aµ(x)→A′

µ(x) = U(x)Aµ(x)U−1(x)

+
i

g
(∂µU(x))U−1(x). (4)

Accordingly, the dimension-2 gluon opertator in momen-
tum space is changed as

〈g2A2(k)〉→〈g2A′ 2(k)〉=〈g2A2(k)〉+2〈g2k·A〉+〈g2k ·k〉.
(5)

For a condensate, only the k=0 mode should be consid-
ered, and we arrive at

〈g2A′ 2(k=0)〉=〈g2A2(k=0)〉, (6)

which simply means that the dimension-2 gluon conden-
sate is gauge invariant.

The gluon field can be decomposed into a condensate
field A

a
µ and a fluctuating field A a

µ [40, 41] as,

Aa
µ(x):=A

a
µ+A

a
µ (x), (7)

where A
a
µ is macroscopically occupied and independent

of x, which carries a zero vacuum expectation value, i.e.
〈vac|Aa

µ|vac〉 = 0. In the system of our work, the glu-
ons condense into each of eight color states and var-
ious spatial directions, and both the gauge invariance
and Lorentz invariance are preserved, which is different
from the Savvidy vacuum [42] with an external chromo-
magnetic field in the background. However, it is worth
mentioning that the Nielsen-Olesen instability [43] in
the Savvidy vacuum can be resolved by the dimension-2
gluon condensate as demonstrated in Refs. [44, 45].

The Fourier transformation of Eq. (7) has the form
of

Aa
µ(k):=A

a
µ(k=0)+A

a
µ (k)≡A

a
µ+A

a
µ (k), (8)

where the background A
a
µ carries only zero momentum

mode, and for simplicity we assume it to be a constant.
By using the expansion Eq.(8), the gluon part of the

QCD Lagrangian becomes

LG = −
1

4

[

GµνGµν+2gfabc
G

a
µν(A

b
µA

c
ν +A

b
µ A

c
ν+A

b
µA

c
ν)

+g2f eabf ecd(Aa
µA

b
ν +A

a
µ A

b
ν)(A

c
µA

d
ν +A

c
µ A

d
ν)

+2g2f eabf ecd
A

a
µA

b
ν(A

c
µA

d
ν +A

c
µ A

d
ν)

+g2f eabf ecd
A

a
µA

b
νA

c
µA

d
ν

]

. (9)

As a further assumption one can treat A
a
µ as a clas-

sical variable:

A
a
µ :=φ0η̂

a
µ, (10)

where φ0 is a constant and η̂a
µ is a vacuum vector. The

vector η̂a
µ has the following properties:

η̂≡
η

|η|
, ηa

µ≡(ηa
4 , ~ηa), (η̂a

µ)2=1, η2=ηa
µηa

µ=32.

The averaging procedure for an operator O[η̂] may be
written as

〈O[η̂]〉η̂=

∫
∏

a′ η̂a′δ(η̂·η̂−1)O[η̂]
∫
∏

a′ η̂a′δ(η̂·η̂−1)
.

Now that the field ηa
µ plays as the vacuum degree of free-

dom, then one can consider the expectation value of this
averaging as the vacuum expectation i.e.

〈vac|O[Aa
µ]|vac〉≡〈vac|O[Aa

µ]|vac〉≡〈O[η̂a
µ]〉η̂ .

After taking the expecting value in terms of ηa
µ, one gets

〈Aa
µA

b
ν〉η̂=

δab

8

δµν

4
φ2

0, 〈Aa
µA

a
µ〉η̂=φ2

0. (11)

Actually it is the nonzero expectation value of the double
combination A

2 that plays as an order parameter repre-
senting the existence of condensate but not the gauge
field Aa

µ as one spontaneously has the constraint of

〈O[(Aa
µ)odd]〉η̂=0. (12)

Then the Lagrangian after this background expansion
becomes

〈L 〉η̂=−
1

4
〈GG〉η̂ =−

1

4

[

G G +2m2
gA

2+4bφ4
0

]

, (13)

with

m2
g=

9

32
g2φ2

0, b=
9

136
g2. (14)

The gluon gets mass because of the existence of nonper-
turbative dimension-2 gluon condensate. We note that
the dimension-four gluon condensate 〈g2G2〉η̂ is propor-
tional to the dimension-2 gluon condensate 〈g2A2〉

2

η̂
.

3 Electric and magnetic screening at fi-

nite temperature

We now use the Lagrangian in Eq. (13) as the effective
model of a pure gluon system. At a finite temperature,
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the temporal and spatial direction of the gluon field is
generally different, i.e.

A :=(A4, ~A ), (15)

and the Lagrangian can be written as

〈L 〉η̂=−
1

4
〈GG〉η̂ =−

1

4

[

G G +2(m2
EA

2
4 +m2

M
~A
2)+4bφ4

0

]

,

(16)
In the zero temperature limit, one has m2

E=m2
M≡m2

g.

By adding the gauge-fixing term in Lagrangian i.e.

Lfix =−
1

2ξ
(∂µAµ)2, one can solve the gluon propagator

of the fluctuating field A a
µ from the equation of

[

K2δµν−(1−1/ξ)KµKν+m2
Eδ44+m2

Mδµν
ij

]

·Dνσ(K)=δµσ.

(17)
The gluon propagator has the form of

Dµν(K)=
P T

µν

K2+m2
M

+
K2P L

µν+ξ
(

m2
Mδ44+KµKν+m2

Ekµkν/k2
)

K2(K2+m2
E)−K2

4 (m2
E−m2

M)+ξ(k2m2
M+K2

4m2
E+m2

Mm2
E)

. (18)

In the limit of ξ→∞, i.e. in the unitary gauge, the gluon propagator takes the form of

Dµν(K)=
1

K2+m2
M

(

δij−
kµkν

k2

)

+
1

k2m2
M+K2

4m2
E+m2

Em2
M

(

δ44m
2
M+KµKν+m2

E

kµkν

k2

)

. (19)

In the zero temperature limit (m2
E=m2

M=m2
g) it becomes

a simple form

Dµν(K)=
1

K2+m2
g

(

δµν−
KµKν

m2
g

)

.

The screening masses are defined as the gluon self-
energy tensor Πab

µν(p4,p) at the static limit (p4=0, p→0)
[46, 47], and the electric and magnetic screening masses
take the following expressions:

m2
Eδ44δ

ab=−Πab
44 (0,p→0), m2

Mδijδ
ab=−Πab

ij (0,p→0).

(20)

Here the gluon self-energy tensor is with a full propa-
gator so that it contains both the perturbative and the
nonperturbative contributions of the interaction of the
gauge field. As pointed out by some authors, the above
definition does not yield a gauge invariant definition of
the screening masses in a strict sense.

On the other hand, we suggest a nonperturbative it-
erative relation of the gluon mass similar to the Dyson-
Schwinger method [48], i.e. the value of the screening
mass especially at a finite temperature is decided by the
gluon self-energy as shown in Fig. 1.

Fig. 1. The gluon self-energy of the Dyson-
Schwinger-equation like method.

The direct calculation by using propagator Eq. (19)
gives

Πab
G,44(P =0)

= −g2Ncδ44δ
abT
∑

n

∫
d3k

(2π)3

(

2
−ω2

n+k2+m2
M

(K2+m2
M)2

+m2
E

k2m2
M−ω2

nm2
E+m2

Em2
M

(k2m2
M+ω2

nm2
E+m2

Em2
M)2

)

, (21)

Πab
G,ij (P =0)

= −g2Ncδij δ
abT
∑

n

∫
d3k

(2π)3

(

2
ω2

n+k2/3+m2
M

(K2+m2
M)2

+m2
M

k2m2
M/3+ω2

nm2
E+m2

Em2
M

(k2m2
M+ω2

nm2
E+m2

Em2
M)2

)

. (22)

Then one immediately gets the results with parameters
given.

4 Results and discussions

We firstly investigate the thermal behavior of electric
and magnetic screening masses by using the definition
Eq. (20) and the electric and magnetic gluon self-energy
in Eqs. (21) and (22).

In our model, there are two input parameters, i.e. the
dimension-four gluon condensate g2G2 or the nonpertur-
bative coupling constant g, and the momentum cutoff
parameter Λ at zero temperature. For simplicity we as-
sume that the coupling constant g and cutoff parameter
Λ remain constants even at a finite temperature. The
value of dimension-four gluon condensate at zero tem-
perature is derived both in QCD sum-rules (lower range
of the interval) [8, 49] and in lattice (higher range of the
interval) [50, 51]. (The dimension-four gluon condensate
in the gluon plasma has been extracted in Ref. [53].)
Different authors give different results but an accept-
able candidate is 〈g2G2〉=(0.009±0.006)×4π

2 GeV4 [52].
We take the value of dimension-four gluon condensate
as 〈g2G2〉=0.009×4π

2 GeV4, which corresponds to the
dimension-2 gluon condensate 〈g2A2〉 = 1.16 GeV2 and
the gluon mass mg=571 MeV.
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For the calculation of the momentum integral, we em-
ploy a soft-cutoff function (for example see [54]), which
takes the the form of

f(K)=e−Λ2K2

≡e−Λ2(ω2

n
+k2). (23)

In the following numerical calculation, we choose Λ =
0.3 [GeV−1].

4.1 The electric and magnetic screening masses

The electric and magnetic screening masses as func-
tions of the temperature are shown in Fig. 2. The solid
line and the dashed-dotted line are for the electric and
magnetic parts, respectively.

Fig. 2. The electric and magnetic screening masses
as functions of temperature.

It is found that both electric and magnetic screening
masses are degenerate and remain unchanged at a low
temperature, and the electric and magnetic components
start to split at the temperature T0 =150 MeV. In the
temperature region T > T0, the electric screening mass
rises rapidly with the increase of temperature, however,
the magnetic screening mass of the gluons remains al-
most the same as its vacuum value.

In order to compare with the lattice data in Ref. [36],
we divide the screening masses by the temperature. We
also assume the critical temperature Tc=T0=150 MeV,
where mE and mM start to split. (The exact value of
Tc is not important here, and will not affect the quali-
tative property of the ratio of the screening mass over
the temperature.) Fig. 3 shows the ratios of mE/T and
mM/T as functions of T/Tc and compare between them
and with the lattice data in Ref. [36]. The solid line and
the dashed-dotted line are for the electric and magnetic
parts, respectively.

It is found that the ratio of the electric screening mass
over temperature mE/T is around ∼1.8 in the region of
2 < T/Tc < 5, which is qualitatively in agreement with
the lattice result mE/T∼2.3. The ratio of the magnetic
screening mass over temperature mM/T is around 1 in

the region of 2<T/Tc <5, which is almost the same as
the lattice result mM/T∼1. It is worth mentioning that
mE/T > mM/T in the temperature region of T/Tc < 3
cannot be explained by using the perturbative scaling
mE∼gT and mM∼g2T , because of the coupling constant
g(T )>1 in this region.

Fig. 3. The ratios of the screening masses mE/T
and mM/T as functions of T/Tc. The lattice data
are taken from Ref. [36].

4.2 Gauge dependence investigation

We have demonstrated clearly in Section 2 that
the dimension-2 gluon condensate in zero momentum is
gauge invariance. In this part, we will check the gauge
dependence of the screening mass.

We have shown the screening masses by using the
gluon propagator Eq. (18) in the unitary gauge, i.e.
ξ → ∞. By fixing the model parameters 〈g2G2〉 =
0.009×4π

2 GeV4 and Λ=0.3 [GeV−1], in Fig. 4 we show
the screening masses in different gauges. The solid lines
are for the the Landau gauge ξ=0, the dash-dotted lines
are for the Feynman gauge ξ = 1, and the dotted lines

Fig. 4. The gauge dependence of the screening
mass as a function of temperature.
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are for the unitary gauge ξ→∞. It is found that below
T = 500 MeV, the screening masses are independent of
different gauges. The gauge dependence starts to show
up when T > 500 MeV, the electric screening mass is
more sensitive to the gauge fixing than the magnetic
screening mass. In the temperature region that we are
interested in, both the electric and magnetic screening
masses are not sensitive to the gauge fixing.

4.3 The Polyakov loop expectation value

The deconfinement phase transition is characterized
by the Polyakov-loop expectation value. The Polyakov-
loop is defined as

L(x)=Pexp[ig

∫β

0

dτA4(x,τ)]. (24)

In order to investigate the relationship between the
dimension-2 gluon condensate and the deconfinement
phase transition, it is necessary to calculate the
Polyakov-loop expectation value. By using perturbative
expansion [55], it has been observed in Ref. [23] that the
Polyakov loop expectation value is associated with the
electric dimension-2 gluon condensate by the following
relationship:

〈L〉=exp

[

−
g2〈A2

4〉

4NcT 2

]

. (25)

In our model, the electric dimension-2 gluon condensate
has a simple relationship with the electric screening mass
square, i.e. 〈A2

4〉=m2
E.

We show the Polyakov loop expectation value as a
function of T/Tc in Fig. 5, and compare the results with
the lattice data in Ref. [56]. It is found that the Polyakov
loop expectation value is zero in the vacuum and low
temperature region, but it starts to rise at around 0.5Tc,
then rises sharply to a value of 0.8 at a high temperature.

Fig. 5. The Polyakov loop expectation value as a
function of T/Tc comparing with the lattice result
in Ref. [56].

We have taken Tc = T0 = 150 MeV, where the electric
and magnetic gluons start to split. It is worth men-
tioning that the susceptibility of the Polyakov loop ex-
pectation value indeed gives the critical temperature at
around Tc = T0. Our simple model indicates that the
color electric deconfinement phase transition is driven
by the electric gluons, and although the nonperturbative
dimension-2 gluon condensate plays an important role, it
still gives at least an 80% contribution to the Polyakov
loop expectation value even in the temperature region
T >3Tc.

5 Conclusions

We have investigated the electric and magnetic
screenings of thermal gluons in a gluodynamic model
with a dimension-2 gluon condensate in zero momentum,
which spontaneously generates the effect of dynamical
gluon mass in the vacuum.

It is found that the electric and magnetic gluons are
degenerate at low temperature. With an increase in tem-
perature, the electric and magnetic gluons start to split
at a certain temperature around T0=150 MeV. The elec-
tric screening mass changes rapidly with temperature at
T > T0, and the Polyakov loop expectation value rises
sharply around T0 from zero in the vacuum to a value
around 0.8 at high temperature. This suggests that the
color electric deconfinement phase transition is driven
by electric gluons. It is also observed that the magnetic
screening mass remains almost the same as its vacuum
value, which manifests that the magnetic gluons remain
confined. Both the screening masses and the Polyakov
loop results are qualitatively in agreement with the Lat-
tice calculations.

The Polyakov loop expectation value in this work is
calculated by using the perturbation expansion, a more
convenient way to derive the Polyakov loop expectation
value is by using AdS/CFT method in the 5D holo-
graphic model, e.g. in Ref. [25] with a dimension-2 dila-
ton field background. It is worth mentioning that the
dimension-2 dilaton field corresponds to a dimension-2
gluon condensate operator, and in Ref. [25], the Polyakov
loop expectation value at finite temperature agrees well
with the lattice data [56].

The model we used in this paper is quite simple, but
it captures some important features of gluon dynamics
in the vacuum as well as at a finite temperature. We can
conclude that the dimension-2 gluon condensate plays
an essential role both in confinement as well as in decon-
finement phase transition.

The authors wish to thank H. Chen, T. Hatsuda, T.

Mukherjee, N. Su, and Q.S. Yan for valuable discus-

sions.
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