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Abstract:

The upgrade project of the Hefei Light Source (HLS), named HLS-II, is under way, which includes

the reconstruction of its storage ring. The HLS-II storage ring has lower emittance and more straight sections
available for insertion devices as compared with the present HLS storage ring. The scan method is applied to the

linear lattice optimization for the HLS-II storage ring to get thorough information about the lattice. To reduce the

amount of computation, several scans with different grid spacing values are conducted. In addition, the calculation

of the chromatic sextupole strength for the achromatic mode is included in the scan, which is useful for nonlinear

lattice optimization. To better analyze the obtained solutions in the scan, the lattice properties and the variables
of quadrupole strengths are statistically analyzed. The process of selecting solutions is described in detail, including

the choice of the working point, the settings for the emittance and optical functions, and the restriction of maximum

magnet strength. Two obtained lattices, one for the achromatic mode and the other for the non-achromatic mode,

are presented, including their optical functions and optimized dynamic apertures.
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1 Introduction

The Hefei Light Source (HLS) at National Syn-
chrotron Radiation Laboratory, which is a second gener-
ation dedicated VUV and soft X-ray synchrotron radia-
tion light source, has been in operation for over 20 years.
The HLS is composed of a 200 MeV injector linac, a
beam transfer line, and an 800 MeV storage ring. The
storage ring consists of 4 identical TBA cells, with an
emittance of 166 nm-rad and a circumference of about
66 m.

Many low emittance synchrotron radiation light
sources have been built around the world for providing
high brightness photon beams for synchrotron radiation
experiments. To obtain lower emittance, some existing
light sources are upgrading their facilities, such as the
Advanced Light Source (ALS). A proposal for upgrading
the HLS was submitted two years ago to enhance the
competitiveness of the HLS. The upgraded light source,
named HLS-II, would have lower emittance and more
insertion devices.

The energy and circumference of the HLS-II stor-
age ring are the same as those of the HLS. The HLS-
IT storage ring contains 8 dipoles, forming 4 identical
DBA cells in the achromatic mode with an emittance of
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less than 40 nm-rad. In the non-achromatic mode, the
emittance is about 20 nm-rad. Compared with the HLS,
the emittance of HLS-II is reduced by about half an or-
der of magnitude in the achromatic mode. In addition,
more straight sections are available for insertion devices
in the HLS-II storage ring. After reconstruction, the
HLS-1I will have better performance than similar ma-
chines around the world.

The HLS-1I storage ring lattice has a simple struc-
ture with several tunable parameters, where the param-
eters are the magnet strengths used for lattice optimiza-
tion. So, naturally, the scan method [1] is applied to
the linear lattice optimization for the HLS-II storage
ring. The scan method can provide the global informa-
tion about the lattice, which is very helpful for lattice
studies. The data post-processing is indispensable for
dealing with the database that is obtained through the
scan method. Then one can select the required informa-
tion from the database.

In the HLS-II storage ring lattice, there are four vari-
ables of quadrupole strengths. So, in our case, to reduce
the amount of computation, several scans with differ-
ent grid spacing values have been conducted. In the
achromatic mode, there are two families of chromatic
sextupoles used to compensate the horizontal and verti-
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cal natural chromaticities. That means that the strengths
of the two chromatic sextupoles can be determined.
So the calculation of these two chromatic sextupole
strengths is included in our scan, which is useful for the
next nonlinear optimization. To better analyze the se-
lected solutions from the obtained database, the prop-
erties of the lattice and the variables of quadrupole
strengths are statistically analyzed in the data post-
processing. This statistical analysis is convenient for the
lattice study.

In this paper we study the overall linear properties of
the HLS-II storage ring lattice, and describe the detailed
process of selecting valuable solutions from the obtained
data in the scan. Then two solutions, one for the achro-
matic mode and the other for the non-achromatic mode,
are selected as candidate lattices, and their optical func-
tions and optimized dynamic apertures are presented in
this paper.

2 Storage ring lattice optimization

The HLS-1I storage ring lattice has a DBA structure
with 4 periods in the achromatic mode, and the magnet
layout of one period is schematically shown in Fig. 1.
There are four families of quadrupoles (Q1, Q2, Q3 and
Q4) and four families of sextupoles (S1, S2, S3 and S4) in
the lattice. There is a 4 m long straight section (DL) and
a 2.3 m medium straight section (DM) in each period,
providing space for injection, RF cavity and insertion
devices.

aQz B Q4 Q3 Q2 Qt

DL/2 UHH:HH DM HU:B I]H DL/2

S1 S2 S3 S4 S4 S3 S2 S1
Fig. 1. The magnet layout of one period of the
HLS-1I storage ring.

2.1 Scan method and results

Usually, accelerator designers tune the lattice to
obtain as many desired lattice properties as possible
through trial and error using some professional codes for
accelerator design. In recent years, the scan method and
artificial intelligence algorithms (like genetic algorithms
and particle swarm optimization) have been applied to
assist designers in linear and nonlinear lattice design and
optimization. In linear lattice optimization, artificial in-
telligence algorithms can solve problems with more than
three or four variables well, where the scan method can-
not be applied due to the huge amount of computation.
Considering that there are four variables of quadrupole
strengths, and that the scan method can give us thor-
ough information about the lattice, we think that the
scan method is the best choice in the linear lattice opti-
mization for the HLS-II storage ring.

For independence and future plan, we wrote the code
for calculating lattice properties. No other accelerator
design code is used in our scan. The HLS-II storage
ring is a small ring with a small curvature radius, so the
dipole contribution to the natural chromaticities is very
important and cannot be neglected. In our code, the cal-
culation of the natural chromaticities has been carefully
considered according to the formula in Ref. [2]. Addi-
tionally, the dipole fringe field has an important effect
on the calculation of vertical beta function and vertical
tune. The value of the dipole fringe field integral is set
to 0.625 according to the present magnet design.

To reduce the computation amount in our scan, we
first scan the whole variable space with larger grid spac-
ing to obtain rough information about the lattice, and
then scan the selected regions of interest with smaller
grid spacing values to obtain detailed information.

So, first, the strengths of the four quadrupole fam-
ilies are scanned in the large range [—10 m™2, 10 m™?]
with a grid spacing of 0.1 m~2. There are about 1.6 bil-
lion quadrupole strength points scanned in total. If one
point is a stable solution, its associated lattice properties
are calculated in the scan. In this scan, the calculation
of lattice properties includes the natural emittance, the
Twiss parameters, and the dispersion function at some
specific points (such as the middle points of long straight
section DL and medium straight section DM), the maxi-
mum values of beta functions and the maximum absolute
value of dispersion in the lattice, the working point (in-
cluding the betatron phase advances over one period),
and the momentum compaction factor.

We set some basic requirements for the natural emit-
tance €., horizontal beta function 3, and vertical beta
function 3, to select solutions:

(1) e, < 40 nm-rad;

(2) maximum g,, 6, <25 m;

(3) 8. at the center of DL >5 m;

(4) 8, at the center of DL <5 m.

After the scan, there are about 5.5 thousand solutions
satisfying the above basic requirements. The strengths of
quadrupole Q1 for all these solutions are all larger than
zero (i.e., the focusing quadrupole), and the strengths of
Q2 are all less than zero (i.e., the defocusing quadrupole).
But the quadruples Q3 and Q4 can be focusing or defo-
cusing. For most of these solutions, about 94 percent,
the quadrupole Q3 is focusing and Q4 is defocusing. For
the other 6 percent of solutions, we have made the sta-
tistical analysis including the calculation of maximum,
minimum and average values of lattice properties. We
found that among the 6 percent of solutions there is no
achromatic-mode solution due to large dispersion at the
center of DL, and that the minimum emittance is larger
relative to that in the region where Q3 is focusing and
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Q4 is defocusing.

Our study focuses on the region where Q3 is focus-
ing and Q4 is defocusing. Then we scan this region of
interest with a smaller grid spacing of 0.02 m~2. Besides
the calculation of the lattice properties mentioned above,
considering the next nonlinear optimization, some other
calculations are included in this scan.

In order to correct the natural chromaticities, sex-
tupole magnets are employed, which introduce signifi-
cant nonlinearities into the lattice limiting the dynamic
aperture. In the lattice design, to reduce the sextupole
strength, it is hoped that the natural chromaticities can
be relatively small, and that the horizontal and vertical
beta functions can be well separated and the dispersion
can be large at the sextupole location. In the achro-
matic mode of the HLS-1I storage ring lattice, there are
only two families of sextupoles, S3 and S4, used to cor-
rect the horizontal and vertical natural chromaticities.
So, given the values of the dispersion and beta functions
at the sextupole location and, the natural chromatici-
ties and corrected chromaticities, the strengths of the
two families of chromatic sextupoles can be calculated
and only determined. Of course, we will not choose the
solution which has large sextupole strength beyond the
maximum design value of sextupole strength, even if the
lattice properties of the solution are satisfactory. Addi-
tionally, too strong sextupole magnets may result in a
relatively small dynamic aperture.

In this scan, the additional calculation includes the
natural chromaticities and the strengths of the two chro-
matic sextupoles, S3 and S4, used to correct the natural
chromaticities to zero. After this scan, there are about 3
million solutions satisfying the basic requirements men-
tioned above. These obtained solutions are in two re-
gions, A and B, which can be seen in the strength space
of the quadrupoles, Q2 and Q4, as shown in the right plot

6

5
o
. 5 r>
£ 4
| |
o
o

3

2

3 4 5
Q1 strength/m™2
Fig. 2.

solutions satisfying the basic requirements.
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of Fig. 2. Of the 3 million solutions, about one-tenth of
the solutions are in region B. Most of the solutions are
in region A.

With the function of minimum value in our statis-
tical analysis, we have compared the lowest emittances
obtained in the two scans respectively with the grid spac-
ing values of 0.1 m~2 and 0.02 m~2. For the achromatic
mode of the HLS-1I storage ring, the minimum emit-
tance is 27.8 nm-rad with J,=1.055 according to the fol-
lowing formula:

Oq'7293
415,

where C;=3.83x107"* m, 7 is the relativistic factor, 6 is
the dipole bending angle, and J, is the horizontal damp-
ing partition number. For the obtained solutions in the
scan, we consider the solution that has the absolute value
of dispersion at the center of DL, ||, less than a spec-
ified value to be achromatic. From Table 1, we can see
that, if the specified value is not very small, |7]<0.1 m,
the two lowest emittances, 25.9 nm-rad and 25.6 nm-rad,
obtained in the two scans are close. If we set the spec-
ified value to be smaller, for example, |n,| <0.05 m or
[no] <0.02 m, the difference between the two scans be-
comes obvious. We can also see that in the condition
of |no| < 0.02 m for the achromatic mode, the obtained
lowest emittance in the scan with the grid spacing value
of 0.02 m~2, 28.1 nm-rad, is close to the minimum emit-
tance of 27.8 nm-rad.

For the non-achromatic mode, the minimum emit-
tance is 9.3 nm-rad with J,=1.055 according to the for-
mula:

(1)

EMEDBA —

1 Cyy26?
Y = — 2
3EMEDBA 125 (2)

From Table 1, we can see that the two lowest emittances,

ETME

0

B N |
—_—

N

b N\ A\ |

B A e

Q2 strength/m™2

The strength regions of the quadrupoles Q1, Q3 (the left plot) and Q2, Q4 (the right plot) having the
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Table 1.
of 0.1 m™2 and 0.02 m~2.

The comparison of the lowest emittances obtained in the two scans respectively with the grid spacing values

achromatic mode

non-achromatic mode

minimum lowest lowest lowest minimum lowest number in number in
emittance emittance emittance emittance emittance emittance (14, 14.5] [14, 15]
(Jx=1.055) with with with (J-=1.055) nm-rad nm-rad
[mo] <0.1m  |no| <0.05m  |no| <0.02 m
scan with 27.8 25.9 29.4 29.8 9.3 14.1
0.1 m—2 nm-rad nm-rad nm-rad nm-rad nm-rad nm-rad o8 257
scan with 27.8 25.6 27.1 28.1 9.3 14.0 49255 167480
0.02 m—2 nm-rad nm-rad nm-rad nm-rad nm-rad nm-rad (~850x58) (~650x257)

14.1 nm-rad and 14.0 nm-rad, obtained in the two scans
are almost the same, which are, however, not close to
the minimum emittance of 9.3 nm-rad. Compared with
the scan with the grid spacing value of 0.1 m~2, the den-
sity of the solutions obtained in the scan with 0.02 m~2
can be increased 625 times (5x5x5x5). We can also see
that the number of solutions in the range [14 nm-rad,
14.5 nm-rad] obtained in the scan with 0.02 m~2 is about
850 times that in the scan with 0.1 m~2. If we relax the
range to [14 nm-rad, 15 nm-rad], it is about 650 times,
which is close to the number of 625. Table 1 tells us
that the difference between the data obtained in the two
scans becomes obvious when some constraints are strict,
which is also easy to understand. It also tells us that,
the HLS-II storage ring has the potential to reach such
low emittance.

But in fact, the emittances of the lattices selected
as the candidates for the HLS-II storage ring are higher
than the above lowest emittances. That is to say, we
have not chosen the lattices with such low emittances.
This is because, in addition to the basic requirements
mentioned above, there are many other restrictions to be
considered, such as the choice of the working point, the
restriction of maximum magnet strength and the consid-
eration of nonlinear dynamics. In the following text, we
will discuss these issues.

2.2 Solution selection and lattice optimization

According to the magnet design for the HLS-1I stor-
age ring [3], the quadrupole strength is required to be
less than 5 m~2, and the sextupole strength is less than
120 m~3.

For most of the solutions in region B shown in Fig. 2,
the strength of the quadrupole Q4 is larger than the max-
imum strength value of 5 m~2. In addition, we have
made the statistical analysis for the solutions in region
B, and the minimum g, at the center of DL is 14.3 m.
That is to say, the solutions in region B have a common
characteristic of large 3, at the center of DL.

Next, we will study the solutions in region A shown in
Fig. 2. Our study focuses on the upper part of region A,
where the solutions have the strength of the quadrupole

Q4 less than 5 m~2. In the data post-processing, we set
strict requirements to further select the solutions with
more satisfactory and detailed parameters.

Concerning the working point, it should be away from
the integer and half-integer values to reduce the sensi-
tivity of some distortions to dipole and quadrupole field
errors, and it should be also away from destructive reso-
nances. The number of superperiods of the HLS-1I stor-
age ring is 4. In the real world, due to imperfections
and perturbations, strictly speaking, there is only one
superperiod, which is the ring itself. The imperfections
and perturbations break the periodicity of the ring to
some extent, which will cause the excitation of some res-
onances that are not allowed in the ideal situation of
perfect periodicity, reducing the dynamic aperture [4].
So in our solution selection process, the working point
is required to be away from the third-order resonances
driven by normal sextuples, even if the resonances are
unallowed in the ideal situation. The working point is
also away from the second-order coupling resonances.
The structural resonances are carefully considered, in-
cluding higher-order structural resonances. Actually, for
the HLS-1I storage ring, we found that the fifth-order
structural resonances have an important effect on nonlin-
ear dynamics in our nonlinear optimization. Moreover,
we hope that the fractional parts of the tunes can be
below 0.5 to control the resistive wall instability.

Detailed above are the requirements for the choice of
the working point. Next we set more stringent require-
ments for the emittance and optical functions. For the
achromatic mode, we set the natural emittance ¢, to be
less than 36 nm-rad. The value of §, at the center of
DL is set to be larger than 10 m for injection. To obtain
high brightness, 3, at the center of DL is less than 3 m,
and B, and (3, at the center of DM are less than 5 m
and 3 m, respectively. The maximum absolute value of
dispersion is less than 1.5 m. And, the absolute value of
dispersion at the center of DL is less than 0.05 m, which
we consider the condition of being achromatic in the case
of scanning with the grid spacing of 0.02 m~2.

Moreover, all the four quadrupole strengths are set
to be less than the maximum value of 5 m~2. For the
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(color online) The selected solutions (the red dots) for the achromatic mode shown in the strength space of

the quadrupoles Q2 and Q4 (the left plot) where the shape of the upper part of region A is plotted, and in the
tune space (the right plot) where the resonance lines up to the third order are plotted.

achromatic mode, the strengths of the two chromatic
sextpuoles S3 and S4 are set to be less than the max-
imum value of 120 m~3.

In our data post-processing, the solutions satisfying
the strict requirements mentioned above can be picked
out. But in this solution selection, the structural reso-
nances of the fourth or higher order are not considered in
selecting the working point. Because we think the grid
spacing of 0.02 m~? is not small enough. After this selec-
tion, some more satisfactory solutions are obtained. In
fact, there are about 100 such selected solutions in total,
and they are shown in the strength space of quadrupoles
Q2 and Q4 in the left plot of Fig. 3 (the red dots). We
also show them in the tune space in the right plot of
Fig. 3 (the red dots), where we can see that these solu-
tions are away from the resonance lines up to the third
order and that the fractional parts of the tunes of these
solutions are below 0.5. For these obtained solutions, not
only their lattice properties but also their quadrupole
strengths are statistically analyzed. The statistical anal-
ysis of quadrupole strength includes the calculation of
maximum, minimum and average values of the strengths
of the four families of quadrupoles. From the maximum
and minimum values of the quadrupole strengths, we can
get the range of the quadrupole strengths of these solu-
tions. That is to say, we can get the region where these
solutions are located. For example, the strength range of
the quadrupole Q2 is [-3.54 m™2, —3.30 m~2], and the
range of Q4 is [—4.70 m™2, —3.18 m?].

Then we scan this small region with an even smaller
grid spacing of 0.005 m~2, which is small enough to
obtain more solutions with more detailed information.
Compared with the spacing of 0.02 m~2, the density of
solutions is increased 256 times (4x4x4x4). This mainly
brings two advantages. First, we can set a stricter con-
dition of being achromatic, i.e., the absolute value of
dispersion at the center of DL is less than, for example,

0.002 m. Secondly, because the density of solutions in
tune space is higher, we can better consider higher order
structural resonances in selecting the working point.

Eventually, we obtained some candidate solutions for
the achromatic mode through such scans and strict se-
lection. For the achromatic mode, the strengths of chro-
matic sextupoles are also obtained. So we can directly
examine the dynamic aperture using some widely used
accelerator design codes. In addition to sextupoles S3
and S4, there are two families of sextupoles, S1 and S2,
at the dispersion-free DL straight section that can be
used as harmonic sextupoles to control the geometrical
aberrations to improve the dynamic aperture. In fact, we
found that the two families of harmonic sextupoles can
well control the amplitude dependent tune shift in our
nonlinear optimization. So here we include sextupoles
S1 and S2 in the nonlinear optimization.

Compared with the calculation of linear parameters,
the calculation of the dynamic aperture consumes much
time. So artificial intelligence algorithms are naturally
considered to optimize the strengths of sextupoles S1 and
S2 to improve the dynamic aperture. Here we use the
particle swarm optimization (PSO) algorithm [5], which
is a widely used artificial intelligence algorithm. We have
successfully applied the PSO algorithm to the dynamic
aperture optimization for other lattices [6]. For more
details about this application, one can refer to Ref. [6].
With frequency map analysis (FMA), we can choose and
slightly tune the optimization results to refine the qual-
ity of the dynamic aperture after dynamic aperture op-
timization. Also, the FMA can direct the working point
selection from those solutions in the vicinity of the stud-
ied solution. Because there are only two families of har-
monic sextupoles to be optimized, the scan method can
also be used to optimize the harmonic sextupoles to im-
prove the dynamic aperture, and then the FMA is used
to choose and analyze the optimization results, as the
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AS had done [7]. In our nonlinear optimization, we used
the Elegant [8] code for tracking.

Finally, we can obtain some solutions for the achro-
matic mode having satisfactory linear lattice properties
and good nonlinear performance. Here we show one ob-
tained solution for the achromatic mode. Its lattice op-
tical functions of one period are shown in Fig. 4, and the
on- and off-momentum dynamic apertures are shown in
Fig. 5. The dynamic apertures are tracked with the phys-
ical aperture of =38 mm and y=10 mm. In fact, the
dynamic apertures without physical aperture limitation
are larger than the physical aperture. The natural emit-
tance is 34.6 nm-rad, and the working point is (4.380,
3.145). The values of 3, and f, at the center of DL are,
respectively, 20.62 m and 2.40 m, and 3, and 3, at the
center of DM are, respectively, 3.66 m and 1.82 m. The
momentum compaction factor is 0.0205.
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Fig. 4. (color online) The optical functions of one

period for the achromatic mode.
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Fig. 5. (color online) The on- and off-momentum
dynamic apertures for the achromatic mode
(tracked with the physical aperture).

For the non-achromatic mode, some settings for so-
lution selection are different from those for the achro-
matic mode. First, there is not the requirement that

the dispersion at the center of DL is near zero, but the
dispersion at the center of DL is set to be less than
0.8 m. Secondly, the natural emittance is set to be less
than 20 nm-rad. Thirdly, the calculation results of the
strengths of the sextupoles S3 and S4 are not suitable for
the non-achromatic mode, because there are four fami-
lies of chromatic sextupoles, S1, S2, S3, and S4, used
to compensate the natural chromaticities. All the other
settings are the same as those in the achromatic mode.
In the nonlinear optimization for the non-achromatic
mode, the PSO algorithm is also used to optimize the
strengths of sextupoles S1, S2, S3, and S4 to enlarge
the dynamic aperture, and the natural chromaticities are
corrected to zero. The optical functions of one obtained
solution are shown in Fig. 6, and Fig. 7 shows the cor-
responding on- and off-momentum dynamic apertures.
We can see that the off-momentum dynamic apertures
are reduced compared with those in the achromatic mode
shown in Fig. 5. This is due to the large dispersion at the
center of DL, and the dynamic apertures without physi-
cal aperture limitation are also larger than the physical
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Fig. 6. (color online) The optical functions of one

period for the non-achromatic mode.
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Fig. 7. (color online) The on- and off-momentum

dynamic apertures for the non-achromatic mode
(tracked with the physical aperture).
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aperture. The natural emittance is 19.8 nm-rad, and the
working point is (4.414, 3.147). The values of 3, and
B, at the center of DL are 19.37 m and 1.99 m, respec-
tively, and 3, and 3, at the center of DM are respectively
3.28 m and 1.99 m. The momentum compaction factor
is 0.0187.

We can change the restriction in the solution selec-
tion to find interesting solutions from the obtained data.
It is obvious that our work is very helpful for the future
lattice study of the HLS II storage ring.

3 Conclusion

We have applied the scan method to the lattice opti-
mization for the HLS II storage ring, and several scans
with different grid spacing values are conducted to re-
duce the computation amount. In our scan, the lattice
properties and the variables of quadrupole strengths can
be statistically analyzed for the obtained solutions to
better understand the overall situation about the solu-
tions. To make the obtained solutions more feasible in

practice, strict solution selection is conducted, including
the choice of the working point, the settings for the emit-
tance and optical functions, and the restriction of max-
imum magnet strength. In addition to the calculation
of lattice properties, we especially include the calcula-
tion of the strengths of two chromatic sextupoles used
to compensate the natural chromaticities in the achro-
matic mode in our scan, which is useful for nonlinear
optimization. Finally, two solutions are selected as the
candidate lattices respectively for the achromatic mode
and the non-achromatic mode. They not only have good
linear lattice properties, but also large optimized on- and
off-momentum dynamic apertures.

We are now considering the inclusion of the calcula-
tion of other parameters of merit, such as the insertion
device brightness and some nonlinear quantities, in our
scan to make our program more powerful. If so, we can
take the brightness as the optimization goal. Obviously,
the work we present here is not limited to the lattice op-
timization for the HLS II storage ring, and it can also be
suitable for other lattices with simple structures or fewer
variables.
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