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ZHOU Liang(±�) LIU Zhong-Chuan(4§A) LIU Peng(4+) DONG Yu-Hui(Â��)1)

Beijing Synchrotron Radiation Facility, Institute of High Energy Physics,
Chinese Academy of Sciences, Beijing 100049, China

Abstract: The first step of phasing in any de novo protein structure determination using isomorphous replacement

(IR) or anomalous scattering (AD) experiments is to find heavy atom positions. Traditionally, heavy atom positions

can be solved by inspecting the difference Patterson maps. Due to the weak signals in isomorphous or anomalous

differences and the noisy background in the Patterson map, the search for heavy atoms may become difficult. Here,

the direct demodulation (DD) method is applied to the difference Patterson maps to reduce the noisy backgrounds

and sharpen the signal peaks. The real space Patterson search by using these optimized maps can locate the heavy

atom positions more accurately. It is anticipated that the direct demodulation method can assist in heavy atom

position determination and facilitate the de novo structure determination of proteins.
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1 Introduction

Solution of the phase problem is central to crystallo-
graphic structure determination. In protein crystallog-
raphy, the phase problem can be solved by isomorphous
replacement (IR) [1, 2] or anomalous scattering (AD) [3,
4] experiments. Finding the positions of heavy atoms is
a crucial step in any de novo protein structure determi-
nation using IR or AD. This step is carried out by in-
specting the peaks on difference Patterson maps, which
are calculated based on the derivative and native data
in IR or anomalous signals in AD. In many cases this is
an efficient method to locate one or a few heavy atom
sites. Presently, there have already been some programs
with the aim of finding heavy atom positions from dif-
ference Patterson maps. Like RSPS [5], a program for
inspection and interpretation of the Patterson function
in CCP4 suite [6], is mainly based on vector-search meth-
ods in the real Patterson space to locate the heavy atom
sites. Another program, SOLVE/RESOLVE [7, 8], which
is more widely used, is an automatic procedure from the
IR/AD data to the electron density maps and model-
building. SOLVE mainly uses difference Patterson maps
to determine the heavy atom positions in IR or AD data
sets. The only input for the program SOLVE can be the
diffraction data; the positions of the heavy atoms can be

identified and then the initial phases can be calculated
from the solutions of heavy atoms [7]. RESOLVE is used
to apply density modifications to improve the phases and
model-building [8].

However, with the increasing complexity of the struc-
tures or the low data quality collected by X-ray detec-
tors, the difference Patterson maps calculated from the
diffraction data usually have higher backgrounds or the
crowding of numerous signal peaks. In such cases, inter-
preting the difference Patterson maps may become more
difficult, since we have to identify great numbers of weak
peaks from strong backgrounds. In the fields of image
restoration and computerized tomography, a method has
been successfully used to extract the signals from incom-
plete and noisy data. This method is the direct demod-
ulation (DD) method [9, 10]. It uses an iterative algo-
rithm to solve the modulation equations under physical
constraints and is proved to be a powerful technique for
dealing with the inverse problem [11, 12]. It is possi-
ble to use the direct demodulation method to optimize
the difference Patterson maps to reduce the background
noises and sharpen the signal peaks in the maps, so as
to locate the heavy atom positions correctly and accu-
rately for the phasing in the structural determination. In
this paper, we applied the direct demodulation method
to the difference Patterson map, and then successfully

Received 9 March 2012, Revised 7 May 2012

∗ Supported by National Natural Science Foundation of China (10979005) and National Basic Research Program of China
(2009CB918600)

1) Correspondence E-mail: dongyh@ihep.ac.cn
©2013 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

018002-1



Chinese Physics C Vol. 37, No. 1 (2013) 018002

locate the heavy atom sites. The results of phasing are
better than those by using conventional programs such
as SOLVE/RESOLVE.

2 Applying the direct demodulation

method to a difference Patterson map

In the field of high energy astronomy image restora-
tion, the real object distribution between the observed
data in one-dimensional space can be mathematically de-
scribed by [9]:

N
∑

i=1

Pi,i′f(i)=d(i′)i′=1,2,··· ,M, (1)

or in matrix form
Pf =d, (2)

where f(i), i=1,···,N is the real object distribution at a
point i and d(i′) i′=1,···,M represent the observed data
at an observation point i′. Pi,i′ is the point-spread func-
tion of the detector system, which can be regarded as
the response of the detector to a point i of object space
during the observation point i′.

The most straightforward way to evaluate an object
from observed data should directly solve the modulation
Eq. (1). But errors always exist in modulation equa-
tions, such as statistical fluctuation and noises in ob-
servation data, etc. The mathematical solutions will
seriously deviate from the true object distribution and
violently oscillate. Li and Wu suggested retrieving the
object from observed data by solving the modulation
Eq. (1) iteratively under physical constraints. This is
the direct demodulation method [9]. If the point-spread
function for any object point is relatively concentrated
round the corresponding observation point, a normal it-
eration method, e.g., the Gauss-Seidel algorithm can be
used to solve the modulation Eq. (1). The approximate
solution for l-th iteration can be calculated by using the
following formulas [9]:

f(i)(l) =
α

P ′

ii

(

di−

i−1
∑

j=1

Pijf(j)(l)−

N
∑

j=i+1

Pijf(j)(l−1)

)

+(1−α)f(j)(l−1), (3)

where the relaxation factor 0<α<1. It has demonstrated
that setting a reasonable physical constraint in the iter-
ative process can effectively strengthen the convergence
and depress the influence of noise. Therefore, we can set
up a lower bound b and upper bound u, for any approx-
imate solution f (l)(i):

if f (l)(i)<b(i), let f (l)(i)=b(i);
if f (l)(i)>u(i), let f (l)(i)=u(i).
The difference Patterson map in protein crystallogra-

phy indicates the vectors between the heavy atoms inside
the proteins. As we know, the peaks in the difference
Patterson map are the convolution of the electron densi-
ties around the heavy atoms which define the vectors. It
is reasonable that the electron densities around the heavy
atoms should follow the Gaussian distribution, therefore
the peaks in a difference Patterson map can also be pro-
cessed as a series of discrete peaks spread by a Gaussian
point-spread function. On this premise, the peaks d(u′,
v′, w′) observed in the difference Patterson map can be
regarded as the convolution of signal peak f(u,v,w) by a
Gaussian distribution function puu′,vv′,ww′ . Expanding
Eq. (1) to the 3-dimensional Patterson space, the mod-
ulation equation can be derived as:

∑

u

∑

v

∑

w

puu′,vv′,ww′f(u,v,w)=d(u′,v′,w′). (4)

Because of the convolution of the Gaussian distribu-
tion function, the peaks in the Patterson map have a
Gaussian broadening. When the structures of proteins
become large or the symmetries of crystals are high, the
peak broadening may cause the crowding of peaks and
possible peak overlaps. Also, there is some noisy back-
ground associated with the observed peak d(u′, v′, w′)
due to the large numbers of vectors between the light
atoms (most atoms of proteins are C, N, O and S) in-
side proteins and the inevitable experimental error in the
diffraction data. In this case, interpreting the difference
Patterson maps may become difficult. Under this situa-
tion, the direct demodulation method can be applied to
the difference Patterson map.

The iteration method based on the Gauss-Seidel
method can be used to solve the modulation Eq. (4) in
a 3-dimensional Patterson space, which is described as:

f (l)(u,v,w) =
α

puu,vv,ww

d(u,v,w)+(1−α)f (l−1)(u,v,w)

−
α

puu,vv,ww

(

w−1
∑

w′=w−m

v+m
∑

v′=v−m

u+m
∑

u′=u−m

puu′,vv′,ww′f (l)(u′,v′,w′)

+

w+m
∑

w′=w+1

v+m
∑

v′=v−m

u+m
∑

u′=u−m

puu′,vv′,ww′f (l−1)(u′,v′,w′)
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+

v−1
∑

v′=v−m

u+m
∑

u′=u−m

puu′,vv′,wwf (l)(u′,v′,w)+

v+m
∑

v′=v+1

u+m
∑

u′=u−m

puu′,vv′,wwf (l)(u′,v′,w)

+

u−1
∑

u′=u−m

puu′,vv,wwf (l)(u′,v,w)+

u+m
∑

u′=u+1

puu′,vv,wwf (l−1)(u′,v,w)

)

, (5)

where the relaxation factor 0< α <1, and m represents
the Gaussian broadening in each peak. Concerning the
convergence of iteration process, we monitor the maxi-
mum deviation of the neighboring two solutions ε during
the iterations, described as Eq. (6). If ε is less than
an acceptable value, the solution can be considered as a
convergent result. The optimal value of α is a heuristic
number, and the value of ε represents the precision of
the solution. In our test, the final solution has no obvi-
ous difference relevant to the selection of α. So α is set
to 0.9, ε is set to 0.1, which can maintain the speed of
convergence and a high precision of solution. After a few
iterations (usually less than 100 cycles), the convergent
result is usually reached.

ε = max
0<u′<u,0<v′<v,0<w′<w

(|f (l)(u′,v′,w′)

−f (l−1)(u′,v′,w′)|). (6)

By employing the DD method to the difference Pat-
terson map, we have downloaded 2 diffraction data by
AD from 2 known protein structures in the Protein Data
Bank (PDB bank). The original difference Patterson
map can be easily calculated from the diffraction data.
Summarized in Table 1, the crystal structure of a puta-
tive aminotransferase from Silicibacter pomeroyi (PDB
ID: 3H14) was determined at 1.9 Å resolution, which has
11 Se in the asymmetric unit. And the crystal structure
of a putative type 11 methyltransferase from Sulfolobus
solfataricus (PDB ID: 3I9F) was determined at 2.5 Å res-
olution, which has six Zn in the asymmetric unit. The
Bijvoet ratios are 2.28% and 4.65% respectively, which
indicates an overall good signal from the heavy atom in
the difference Patterson map.

The feasibility of the theory applied to the difference
Patterson map can be depicted in the case of a pro-
tein structure whose PDB ID is 3H14. Fig. 1(a) shows
a cross section of the original difference Patterson map
calculated from the diffraction data. We can see there
are some peaks together with a noisy background in the
Patterson space. The noisy background has a level from
−1.5 to 1, due to the large number of vectors between the
light atoms and the experiment error in the diffraction
data. Then the DD method is applied to this differ-
ence Patterson map. The non-negative constraints are

used in the iterative process to solve Eq. (5), e.g., if
f (l)(u,v,w)<0, then let f (l)(u,v,w)=0. After the opti-
mization, a clearer and sharpener map was obtained. As
shown in Fig. 1(b), only a few peaks are left in the map,
it is clearly seen that the peak height is higher than the
corresponding peak in the original map. The main effect
of the DD method is to reduce the noisy backgrounds and
sharpen the level of signal peaks in the original difference
Patterson map. It should be noted that there are still
some fake peaks left in this optimized map. These fake
peaks could cause fake heavy atom positions, but they
can be effectively rejected by RSPS during the vector-
search process [5].

Fig. 1. (color online) Comparison between the
original difference Patterson map (a) and the DD
optimized map (b) on a cross section w=50 in the
case of 3H14. Only the peak height is labeled.
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Table 1. Three cases of protein downloaded from the PDB.

ID space group resolution/Å number of residues heavy atom wavelength/Å Bijvoet ratio (〈|∆F |〉/〈F 〉)(%)

3H14 C2221 1.9 391 Se(11) 0.97929 2.28

3I9F P213 2.5 170 Zn(6) 0.97958 4.65

∗ Bijvoet ratioµ〈|∆F |〉/〈F 〉≈(NA/NT)1/2(2f ′′/Zeff ). NA is the number of anomalous scatters, NT is the total number of atoms in
the structure and Zeff is the normal scattering power for all atoms

3 Results and discussion

We use three different procedures to find the heavy
atom location in the two cases for comparison:

(1) RSPS [6]: The original difference Patterson maps
calculated from the diffraction data were inputted into
the RSPS program to find heavy atom sites.

(2) DD-RSPS: The original difference Patterson map
was first optimized by the DD method, and then inputted
into the program RSPS.

(3) SOLVE [7]: The diffraction data downloaded from
the PDB were directly inputted into the SOLVE program
for automatic heavy atom sites determination.

The results of three procedures are listed in Table 2.
Due to the noisy backgrounds and the weak peaks in
the original difference Patterson map, it fails to locate
the heavy atom positions with this map by RSPS. In
contrast, the RSPS program functions well with the op-
timized map by using the DD-RSPS procedure in the
2 cases. Compared with the solution from SOLVE, the
DD-RSPS procedure can find nearly the same numbers
of heavy atom as SOLVE does. So the optimized map,
which has lower noisy backgrounds and sharpener signal
peaks, is more suitable and effective for performing the
real space Patterson search than the original Patterson
map.

In our test§the DD-RSPS procedure can get a bet-
ter solution of heavy atom position determination. For
the case of 3I9F, six Zn atoms were determined by both
DD-RSPS and SOLVE. As listed in the last column of
Table 3, the heavy atom substructures of 3I9F all have a
high occupancy, which indicates the good signal strength
of each heavy atom. This high quality signal is favor-
able for locating the heavy atom positions. The sites of
Zn atoms are completely the same when determined by
the 2 different procedures (see Table 3). For the case of
3H14, a full set of Se atoms can be located by DD-RSPS,

but only 10 of 11 Se atoms can be found by SOLVE au-
tomatically. Illustrated in Table 4, it is seen that the
11st Se atom has a lower occupancy of 0.3844 than the
other heavy atom. That is to say, the signal strength
from this atom is lower than the other heavy atom sig-
nal. This leads to the failure to locate the 11st Se atom
by SOLVE. After optimization by the DD method, the
map has lower noisy backgrounds and sharpener signal
peaks compared with the original map (see Fig. 1(b)).
With this optimized map, we can effectively perform the
real space Patterson search and successfully locate the
11st Se atom by RSPS.

Table 2. Results of the RSPS, DD-RSPS and
SOLVE procedure to find the position of heavy
atom position.

numbers of heavy atoms found by
ID

RSPS DD-RSPS SOLVE

3I9F 0 6 6

3H14 0 11 10

Then, the 2 sets of heavy atom parameters deter-
mined by the DD-RSPS/SOLVE of each case are used
for structural determination. The heavy atom parame-
ters and diffraction data were inputted into the SOLVE
(phasing only)-RESOLVE procedure for phasing. RE-
SOLVE was used for density modification and model-
building in all cases. The resultant overall-averaged
phase errors are listed in Table 5.

It is seen that in the case of 3I9F, the overall-averaged
phase errors from different procedures are nearly the
same. That is because the two sets of heavy atom
parameters determined by DD-RSPS and SOLVE are
completely the same in this case. Moreover, the DD-
RSPS-RESOLVE procedure could lead to a result bet-
ter than that of SOLVE-RESOLVE. For the case of
3H14, the phasing result has been improved through DD-
RSPS-RESOLVE procedure by more than 2.1 degrees.

Table 3. Comparison between the solutions of the DD-RSPS and SOLVE procedures to find the heavy atom position
on a fractional coordinate in the case of 3I9F. The position of the 1st Zn determined by DD-RSPS is equivalent to
the position determined by SOLVE because of the symmetry P213.

DD-RSPS SOLVE
Zn

X Y Z X Y Z
q

1 0.0930 0.0030 0.0938 0.0938 0.0930 0.0030 1.0630
2 0.3221 0.2666 0.1954 0.3222 0.2666 0.1954 1.1504
3 0.0384 0.1645 0.1236 0.0383 0.1645 0.1236 0.8747
4 0.7068 0.7625 0.1344 0.7067 0.7624 0.1344 1.0300
5 0.1573 0.9414 0.0838 0.1572 0.9414 0.0838 0.9078
6 0.2519 0.4372 0.2398 0.2519 0.2400 0.2400 0.8633

∗X, Y , Z: fractional coordinates; q: occupancy
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Table 4. Comparison between the solutions of the DD-RSPS and SOLVE procedures to find the anomalous scatters
position on a fractional coordinate in the case of 3H14.

Se
DD-RSPS SOLVE

q
X Y Z X Y Z

1 0.5572 0.2332 0.1853 0.5573 0.2332 0.1853 1.0514
2 0.2397 0.2930 0.0678 0.2397 0.2930 0.0678 1.1959
3 0.5679 0.3647 0.0570 0.5678 0.3647 0.0570 0.7741
4 0.3002 0.2949 0.0445 0.3002 0.2950 0.0445 0.7620
5 0.6584 0.4222 0.2053 0.6584 0.4222 0.2053 0.8977
6 0.4185 0.4744 0.2337 0.4185 0.4743 0.2337 0.7148
7 0.5551 0.4786 0.1533 0.5550 0.4786 0.1534 0.5196
8 0.1109 0.3694 0.0216 0.1108 0.3694 0.0216 0.8171
9 0.6726 0.4648 0.0914 0.6725 0.4648 0.0914 0.7879
10 0.2363 0.3551 0.1619 0.2363 0.3551 0.1619 0.6882
11 0.2577 0.3882 0.1832 0.3844

∗X, Y , Z: fractional coordinates; q: occupancy

Fig. 2. 1.9 Å electron-density maps of the case 3H14
contoured at 1σ by (a) DD-RSPS-RESOLVE (b)
SOLVE-RESOLVE procedure. The known struc-
ture (shown in stick mode) is superimposed. As
is seen by the arrow, the electron density map
derived from the DD-RSPS-RESOLVE procedure
provides a better connectivity of the main-chain
density to the known structure than that of
SOLVE-RESOLVE.

Although the improvement in this case is only about 2.1
degrees, the effect on the corresponding Fourier electron-
density map is evident. Fig. 2 shows the electron-density
map output by the two different procedures, respectively,

the known structure is shown in stick model. In com-
parison with the known stick model superimposed, it is
seen that the electron-density map from the DD-RSPS-
RESOLVE procedure (see Fig. 2(a)) provides much more
structural information than that of SOLVE/RESOLVE
(see Fig. 2(b)) So the electron-density map derived from
DD-RSPS-RESOLVE procedure is much easier to inter-
pret than that from SOLVE-RESOLVE.

Table 5. Overall-averaged phase errors in degrees
of different phasing procedures in the 2 cases.

procedure
ID

3I9F 3H14

SOLVE-RESOLVE 62.0 64.8

DD-RSPS-RESOLVE 62.1 62.7

∗The overall-averaged phase errors are calculated between the
phasing result by SOLVE and the Fourier transformation of the
known structural model

4 Conclusion

The present test shows that the direct demodulation
method can optimize the difference Patterson map. With
this optimized map, we can locate the positions of heavy
atoms accurately by using a real space Patterson search
method. The phasing result is better than conventional
programs such as SOLVE/RESOLVE. It is anticipated
that the direct demodulation method can play an assis-
tant role in the heavy atom position determination and
facilitate the de novo structure determination of proteins.
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