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Constraints of unparticle physics parameters from K0-K̄0 mixing *
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Abstract: The neutral kaon meson mixing plays an important role in the test of the Standard Model (SM) and new

physics beyond it. Scale invariant unparticle physics induces a flavor changing neutral current (FCNC) transition

of K0-K̄0 oscillation at the tree level. In this study, we investigate the scale invariant unparticle physics effects on

the K0-K̄0 mixing. Based on the current experimental data, we give constraints of K0-K̄0 mixing on the unparticle

parameters.
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1 Introduction

The neutral kaon meson system has played an im-
portant role in history. The mixing-induced and indirect
CP violation were first discovered in this system [1]. In
the SM, the neutral kaon mixing occurs through a flavor-
changing neutral current transition depicted by a box di-
agram at the loop level. Thus it provides an important
place to test the SM and/or explore new physics beyond
it. The interest in research of new physics in the neu-
tral kaon system is extensive. Even recently, there are
many new physics studies, for example, in Refs. [2–7]. At
present, the experimental data on the neutral kaon mix-
ing is very precise, and the theoretical studies, in par-
ticular the lattice calculations on the non-perturbative
quantities have also improved a lot. The research on the
neutral kaon system are going into a deeper level.

The purpose of the study is to explore the neutral
kaon mixing within a new physics scenario called unpar-
ticle. This is an idea proposed by Georgi in Refs. [8, 9].
Scale invariance is the guiding principle in this scenario.
A scale invariant matter, named unparticle, possesses
some properties which are different from those of the or-
dinary particles. The dimension of the unparticle is in
general fractional rather than an integral number. An-
other aspect is that the real unparticle has no definite
mass. The interactions between the unparticle and the
SM particles are described in the framework of low en-
ergy effective theory and lead to various interesting phe-
nomena. The unparticle physics received intensive inter-
est after the idea was proposed. Although this topic is
currently not hot, it is still necessary to study its effects

in different physical processes, because we don’t know
what is the right direction of new physics and which new
physics model favors the real world.

Within the unparticle scenario, the neutral meson
mixing, such as D0-D̄0, B0

d-B̄
0
d and B0

s -B̄
0
s have been ex-

plored [10–13]. Only the neutral kaon mixing is not stud-
ied. Because the energy scale related to the kaon system
is lower than other heavy mesons, the SM contribution
should be more dominant and the new physics will play
a less important role. However, the more precise data on
the kaon system can provide a more stringent constraint
on the new physics parameters. This is the reason why
the kaon system is still an active research area. One
difficult problem related to the kaon system is the long
distance contribution to the mixing parameter which is
not easy to evaluate. This problem becomes more seri-
ous in the kaon system than in that of the heavy meson.
The aim of this study is to constrain the unparticle pa-
rameters from the neutral kaon mixing. Because there
has been no similar study before, it is necessary to inves-
tigate whether the unparticle scenario can be applicable
to the kaon system.

2 K0-K̄0 mixing in the SM

At first, we give notations for the neutral kaon sys-
tem. In the K0-K̄0 system, the oscillation between the
two neutral kaon mesons is described by the equation

i
dψ(t)

dt
=Ĥψ(t), ψ(t)=

(

|K0(t)〉
|K̄0(t)〉

)

, (1)
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with Mij and Γij being the transition matrix elements.
We have assumed the CPT conservation and hermiticity
for the matrices M̂ and Γ̂ .

After diagonalizing the system and using the conven-
tion CP |K0〉=−|K̄0〉, CP |K̄0〉=−|K0〉, we obtain the
eigenstates:

|KL,S〉=
(1+ε̄)|K0〉±(1−ε̄)|K̄0〉

√

2(1+|ε̄|2)
, (3)

where the mixing parameter ε̄ is a small complex quan-
tity given by

1−ε̄
1+ε̄

=

√

√

√

√

√

√

M∗

12−i
1

2
Γ ∗

12

M12−i
1

2
Γ12

. (4)

In the SM, the oscillation between the flavor states K0

and K̄0 are caused by weak interactions, thus the above
eigenstates are called the weak eigenstates. In new
physics which is beyond the SM, the eigenstates repre-
sent generalized states including both the SM and new
physics effects.

The eigenvalues associated with the eigenstates are

ML,S=M±ReQ, ΓL,S=Γ∓2ImQ, (5)

where

Q=

√

(

M12−i
1

2
Γ12

)(

M∗

12−i
1

2
Γ ∗

12

)

. (6)

We thus get

∆M=M(KL)−M(KS)=2ReQ,

∆Γ=Γ (KL)−Γ (KS)=−4ImQ.
(7)

Since ε̄ is small, at the order of O(10−3), the below
relations are reasonable,

ImM12�ReM12, ImΓ12�ReΓ12. (8)

It should be noted that the above relations are still ap-
plicable in the unparticle physics. Thus, ignoring the
small imaginary part of M12 and Γ12, we can get a good
approximation:

∆MK
∼=2ReM12, ∆ΓK

∼=2ReΓ12. (9)

In the SM, the matrix elements M12,Γ12 of the K0-K̄0

mixing contains both the short distance (SD) and long
distance (LD) contributions:

MSM
12 =MSD

12 +MLD
12 , Γ SM

12 =Γ SD
12 +Γ LD

12 . (10)

An important formula for ε̄ including both the SD and
LD contributions of the SM is [14]

ε̄=κε

eiφε

√
2

ImM12

∆MK

, (11)

where the phase φε = (43.51±0.05)◦ and factor κε =
0.94±0.02. Thus, the mixing parameter ε̄ is approxi-
mated by

ε̄≈eiφε sinφε

ImM12

∆MK

. (12)

At the quark level, the flavor changing neutral cur-
rent transitions between K0 and K̄0 are induced through
a box diagram with exchange of the intermediate up type
quarks. This is the short distance contribution to M12.
From [15], the formula is given as

MSD
12 =

G2
F

12π
2
f 2
KB̂KmKm

2
W

[

λ∗2
c η1S0(xc)+λ

∗2
t η2S0(xt)

+2λ∗

cλ
∗

t η3S0(xc,xt)
]

, (13)

where fK is the K-meson decay constant, mK is the K-
meson mass, and B̂K is the renormalization group invari-
ant parameter. The parameters λi=V

∗

isVid where Vis and
Vid are the CKM matrix elements. The functions S0 are

S0(xt) =
4xt−11x2

t+x
3
t

4(1−xt)2
− 3x3

t lnxt

2(1−xt)3
,

S0(xc) = xc, (14)

S0(xc,xt) = xc

[

ln
xt

xc

− 3xt

4(1−xt)
− 3x2

t lnxt

4(1−xt)2

]

.

The values of ηi are taken to be the next-to-leading-order
(NLO) results given in [16–19]

η1=1.38±0.20, η2=0.57±0.01, η3=0.47±0.04. (15)

For the Γ12, the SD contribution arises from the
virtual quark interactions and is expected to be very
small. The LD contribution coming from the intermedi-
ate hadron states should dominate. However, the theo-
retical uncertainties due to the non-perturbative dynam-
ics are very large. Usually, it’s difficult to separate the
hadron uncertainties and the new physics effects. As will
be shown, the unparticle parameters can be constrained
from the term M12. So, in the discussion later, we will
not use the Γ12 in order to reduce the theoretical uncer-
tainties.

In the above derivations and the forthcoming discus-
sions in the unparticle physics, the below relations are
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useful

〈K̄0|s̄γµ(1−γ5)ds̄γ
µ(1−γ5)d|K0〉 =

8

3
f 2
Km

2
KB̂K,

〈K̄0|s̄(1−γ5)ds̄(1−γ5)d|K0〉 = −5

3
f 2
Km

2
KB̂K

×
(

mK

ms+md

)2

,

(16)

where ms,d are the strange and down quark masses.

3 K0-K̄0 mixing in unparticle physics

In this section, we turn to study the K0-K̄0 mixing
in unparticle physics. In the low energy effective theory,
unparticle fields will emerge below an energy scale ΛU

[8]. The relevant low energy effective interaction for the
s and d quarks is described by

Cds
S

ΛdU

U

s̄γµ(1−γ5)d ∂µ
OU+

Cds
V

ΛdU−1
U

s̄γµ(1−γ5)d O
µ
U
+h.c.,(17)

where OU and Oµ
U

denote operators of the scalar and
vector unparticle fields respectively. The CS and CV are
dimensionless coefficients and they depend on quark and
lepton flavors in general. Since only quarks s and d are
of concern in this study, we will simplify Cds

S →CS and
Cds

V →CV in the later discussions.
The propagators for the scalar and vector unparticle

fields with the time-like momentum P are given by [9, 20]∫
d4xeiP ·x〈0|TOU(x)OU (0)|0〉

= i
AdU

2sin(dUπ)

1

(P 2+iε)2−dU

e−idUπ,

∫
d4xeiP ·x〈0|TOµ

U
(x)Oν

U
(0)|0〉

= i
AdU

e−idUπ

2sin(dUπ)

−gµν+2(dU−2)P µP ν/(dU−1)P 2

(P 2+iε)2−dU

,

(18)

where

AdU
=

16π
5/2

(2π)2dU

Γ (dU+1/2)

Γ (dU−1)Γ (2dU)
. (19)

Here we consider the vector unparticle which is not trans-
verse: ∂µO

µ
U
6=0 unless dU =0 due to unitarity constraint

[21]. Another property of dU requested by the unitarity
constraint is that dU >3 for vector unparticles and dU >1
for scalar unparticles [20]. The scale dimension dU is frac-
tional in general, and it cannot be integral (except dU =1,
where the singularity is canceled by AdU

in the nomina-
tor) due to the singularity of the function sin(dUπ) in the
denominator. The factor e−idUπ provides a CP conserv-
ing phase which produces peculiar interference effects in
high energy scattering processes [9], Drell-Yan process
[22] and CP violation in B decays [12].

Fig. 1. The Feynman graphs of the K0-K̄0 mixing
in unparticle physics. The double dashed lines
represent the unparticle fields.

Unlike the SM where the ∆S= 2 FCNC transitions
occurred at loop level, the unparticle contribution can
induce tree level FCNC transitions between K0 and K̄0

which are depicted in Fig. 1. There are two diagrams cor-
responding to t- and s-channel unparticle exchanges. For
the s-channel, the momentum of the unparticle P 2=m2

K.
For the t-channel, the momentum of the unparticle is not
fixed which introduces an uncertainty in the calculation.
Because strange quark mass is much greater than that
of the down quark, ms�md, the momentum of the kaon
meson is mostly carried by the strange quark. The mo-
mentum of the exchanged unparticle will be at the order
of mK, and we make an approximation that P 2≈m2

K.
Using the Feynman rules given above, we obtain the

final expression for the transition matrices in the unpar-
ticle physics. For the scalar unparticle,

MU

12 =
5C2

S

12

f 2
KB̂KAdU

mK

(

mK

ΛU

)2dU
(

mK

ms+md

)2

cot(dUπ),

Γ U

12 =
5C2

S

6
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(

mK

ΛU

)2dU
(

mK
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)2

, (20)

and

MU

12 =
C2

V

4

f 2
KB̂KAdU

mK
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mK

Λu

)2dU−2
[

8

3
−10(dU−2)
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(

mK
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, (21)
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for the vector unparticle. For both cases, we have

MU

12=
Γ U

12

2
cot(dUπ). (22)

The above relation has been given in Ref. [13].
For the mixing parameter ε̄, it is straightforward to

obtain

ε̄U=eiφε sinφε

ImMU

12

∆M exp
K

, (23)

where we have used the ∆M exp
K to replace the ∆MK in

Eq. (12). The above formula is applicable for both the
scalar and vector unparticles.

4 Constraints of the unparticle parame-

ters

In the K0-K̄0 system, the mass difference ∆MK, width
difference ∆ΓK and the CP violating parameter ε̄ are the
most important experimental parameters. We will make
use of these data to constrain the phenomenological pa-
rameters of the unparticle physics. From PDG [23], the
experimental results are

∆M exp
K =(3.483±0.006)×10−15 GeV,

|ε̄|exp=(2.228±0.001)×10−3.
(24)

The relations between the experiment and theory have
been obtained as

∆M exp
K =2Re

(

MSD
12 +MLD

12 +MU

12

)

,

|ε̄|exp=
|eiφε |

∆M exp
K

[

κε√
2
ImMSD

12 +sinφεImM
U

12

]

.
(25)

The SD contribution of MSM
12 is given in Eq. (13) and

can be calculated reliably. The main uncertainty in the
SM comes from the parameter B̂K. We use the value
B̂K=0.724±0.024 given in Ref. [24] calculated from a lat-
tice method. For the LD part ReMLD

12 , it is taken from
[14]:

ReMLD
12 =

∆MLD
K

2
,

∆MLD
K

∆M exp
K

≈0.1±0.2.

(26)

After subtracting the SM contribution, the remainder
is the new physics effect. Thus, we can know the unpar-
ticle contributions ReMU

12 and ImMU

12. Using Eqs. (20,
21), we obtain the constraints of CS, CV as follows. For
the coupling coefficients C2

S and C2
V, they are obtained

as

C2
S =

12(ms+md)
2 sin(dUπ)MU

12

5AdU
B̂Kf 2

KmK

(

mK

ΛU

)−2dU

, C2
V=

4mK sin(dUπ)MU

12

AdU
B̂Kf 2

K

[

8

3
−10(dU−2)

3(dU−1)

(

mK

ms+md

)2
]

(

mK

ΛU

)2−2dU

. (27)

One needs to note that Eqs. (8, 9) are used in deriving the above equations. The vector coupling is more suppressed

due to an additional factor

(

mK

ΛU

)2

. Similarly, the real and imaginary parts of the scalar coupling C2
S are given by

ReC2
S =

12(ms+md)
2 tan(dUπ)ReMU

12

5AdU
B̂Kf 2

KmK

(

mK

ΛU

)

−2dU

,

ImC2
S =

12(ms+md)
2 tan(dUπ)ImMU

12

5AdU
B̂Kf 2

KmK

(

mK

ΛU

)−2dU

,

(28)

and for the vector coupling C2
V, the real and imaginary parts are given by

ReC2
V =

4mKtan(dUπ)ReMU

12

AdU
B̂Kf 2

K

[

8

3
−10(dU−2)

3(dU−1)

(

mK
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)2
]

(

mK

ΛU
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,

ImC2
V =

4mKtan(dUπ)ImMU

12

AdU
B̂Kf 2

K

[

8

3
−10(dU−2)

3(dU−1)

(
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)2
]

(

mK

ΛU

)2−2dU

. (29)
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4.1 Input parameters

Here, we collect all the input parameters used in the
numerical analysis. Most parameters are taken from
PDG [23].

CKM parameters (A, λ, ρ, η):

A=0.804+0.022
−0.015, λ=0.2253±0.0007, (30)

ρ=0.132+0.022
−0.014, η=0.341±0.013. (31)

Decay constant of kaon meson:

fK=160 MeV. (32)

Quark and gauge boson masses:

md=4.1−5.8 MeV, ms=101+29
−21 MeV,

mc=1.27+0.07
−0.09 GeV, mW=80.384±0.014 GeV, (33)

mt=171.2±0.9±1.3 GeV.

4.2 Bound on the unparticle parameters

After the above preparations, we are now ready to
discuss the numerical results. The phenomenological pa-
rameters of unparticle physics are: scale dimension dU ,
energy scale ΛU and the coupling coefficients CS(CV).
At first, we provide an estimate on the magnitude of
the scalar coupling parameter CS from the neutral kaon

mixing and then compare it with the values constrained
from the neutral B and D systems. As [11], we fix the
energy scale and dimension by ΛU=1 TeV and dU =3/2.
The numerical results of the absolute value of the scalar
coupling parameter |CS| are given in Table 1. We also
include the upper bound of the coupling from neutral B
and D systems given in Ref. [11] for comparison. Be-
cause the unitarity constraint for the vector unparticle
is not considered in Ref. [11], it is impossible to compare
the results for the vector coupling coeffients. Thus, only
the scalar coupling parameter is given. From Table 1,
the scalar coupling coefficient CS is constrained to be
CS=7.1×10−3. Under the assumption that the coupling
parameter is flavor independent, the kaon mixing pro-
vides more stringent constraints on unparticle coupling
than other systems.

As a next step, we consider the general case where the
scale dimension is varied. At present, the exact knowl-
edge about the range of the scale dimension is still

Table 1. The constraints on the coupling parame-
ter |CS| with dU =3/2 and ΛU =1 TeV.

from B-system from D-system from K-system

|CS| 3.4×10−2 2.1×10−2 7.1×10−3

Fig. 2. The scalar unparticle coupling parameter CS versus the scale dimension dU where the vertical variable
XS=log10

√

|ReC2
S|, YS=log10

√

|ImC2
S|. The solid line is given for ΛU =1 TeV and the dashed for ΛU =10 TeV.

Fig. 3. The scalar unparticle coupling parameter CV versus the scale dimension dU where the vertical variable
XV=log10

√

|ReC2
V|, YV=log10

√

|ImC2
V|. The solid line is given for ΛU =1 TeV and the dashed for ΛU =10 TeV.
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unknown. As we have pointed out before, unitarity con-
straints request dU > 1 for scalar and dU > 3 for vec-
tor unparticles. For the coupling parameters CS(CV),
their real and imaginary parts will be explored separately
unlike the analysis in Refs. [11, 12]. Because the cou-
pling coefficients CS(CV) are very sensitive to the scale
dimension dU and change rapidly as dU varies, we in-

troduce logarithmic functions X(S,V) =log10

√

|ReC2
(S,V)|

and Y(S,V)=log10

√

|ImC2
(S,V)| (here the subscripts “S, V”

represent the scalar and vector cases). The numerical
results of the functions X(S,V) and Y(S,V) for the scalar
and vector unparticle versus the scale dimension dU are
plotted in Figs. 2 and 3. The range of the dimension is
chosen to be 1<dU <3 for the scalar and 3<dU<5 for
the vector cases.

SinceX(S,V) and Y(S,V) represent the order of ReC(S,V)

and ImC(S,V), negative values mean that the coupling
coefficients are smaller than 1. If the coupling param-
eters are too large, one may meet the non-perturbative
problem. If we require that the coupling parameters are
smaller than 1, we obtain 1<dU<2 for scalar unparticle.
For the vector unparticle, dU has to lie very close to 3.
This unnatural thing indicates that the vector unparticle
contribution is either too small or a large coupling pa-
rameter is required. From Figs. 2 and 3, it is shown that
the values of X are larger than Y by about 1–2, thus the
magnitude of the real part of the coupling parameters
C(S,V) is larger than their imaginary part by 1–2 orders
for both the scalar and vector unparticles. The physi-
cal reason is that the real part is proportional to ∆M exp

K

while the imaginary part contributes to the small kaon
mixing parameter ε̄. Another property of these figures
is that the parameters X and Y are increasing in nearly
the whole range except at the integral and half integral
points of dU . This is because the tan(dUπ) function will
break to +∞ or −∞ when the dimension is getting half
integral, or become zero when the dimension is integral.

In both cases there will be no constraints on C(S,V). The
dependence of C(S,V) on the energy scale ΛU is simple
because C(S,V) are proportional to ΛdU

U
or ΛdU−1

U
. This

can also be seen clearly from figures where we give two
cases of ΛU=1 TeV and ΛU=10 TeV.

5 Conclusions and discussions

In this study, the new physics effects from the scale
invariant unparticle sector on the K0-K̄0 mixing are ex-
plored. The SM contribution, in particular the long dis-
tance part, will produce large uncertainties which are
not under good control. This difficulty exists for any
new physics search in the kaon system. We have con-
sidered the long distance contributions in a simple and
maybe a slightly crude way. This treatment can be im-
proved in the future if we have better knowledge of the
non-perturbative hadron dynamics.

With the unparticle scenario, the flavor changing neu-
tral current transitions of K0-K̄0 mixing can occur at tree
level. Thus, the neutral kaon system provides a sensible
probe to unparticle physics. We observe that the kaon
system gives very stringent constraint on the parame-
ters. The coupling parameter for the scalar unparticle
and quarks is obtained to be at the order of 10−3. For the
vector unparticle, if the unitarity condition is imposed,
there is nearly no parameter space to let the coupling
coefficient be smaller than 1. When the scale dimension
dU is larger than 3, the vector unparticle contribution
will be small, otherwise, large coupling parameters are
required which may induce a non-perturbative problem.
Our numerical results show that the coupling parameters
are very sensitive to the choice of the scale dimension.

The unparticle physics effects on the neutral B and D
mixing had been studied a lot in literature but there had
been no study on the neutral kaon system up to now.
Our results show that the neutral kaon is also important
for testing the unparticle scenario.
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