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Cumulants in the 3-dimensional Ising, O(2) and O(4) spin models *
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Abstract: Based on the universal properties of a critical point in different systems and that the QCD phase

transitions fall into the same universality classes as the 3-dimensional Ising, O(2) or O(4) spin models, the critical

behavior of cumulants and higher cumulant ratios of the order parameter from the three kinds of spin models is

studied. We found that all higher cumulant ratios change dramatically the sign near the critical temperature. The

qualitative critical behavior of the same order cumulant ratio is consistent in these three models.
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1 Introduction

One goal of current relativistic heavy ion collision ex-
periments is to locate the QCD critical point. In the
idealized thermodynamic limit, the correlation length ξ
would diverge at the critical point [1]. But the system
size, especially the evolution time of the formed system is
finite in relativistic heavy-ion collisions [1, 2]. ξ may not
be fully developed. It’s estimated to be at most the value
of 2–3 fm [2]. It’s close to its “natural” value of 1 fm.
So it’s essential to find an observable that is sensitive to
the critical point.

Recently, it has been proposed that the higher cu-
mulants will be more sensitive to the critical point [3].
On one hand, they are more sensitive to the correlation
length. For example, the third cumulant and fourth cu-
mulant of net-proton in heavy-ion collisions individually
diverge with ξ4.5 and ξ7, which is much faster than the
quadratic cumulant. On the other hand, the higher cu-
mulant can reflect the fine-detail information of the net-
proton distribution. The sign changes of various cumu-
lants are noted in related papers. For example, the sign
of the third order cumulant is discussed in Ref. [4], the
negative fourth order cumulant is discussed in Refs. [5, 6],
and the sign change of sixth and eighth order cumulants
is shown in Ref. [7]. In order to compare the results of
theory with experiments, the ratios of higher cumulants
to the second order one are usually used.

As we know, different systems have universal behav-
ior in the vicinity of a critical point. The systems falling
to the same universality class have the same value for the
critical exponent. So the results of relatively simple sys-
tems, such as spin models with an O(N)-symmetry, play
an important role in the analysis of phase transitions in
much more complicated systems.

The critical point terminating the first order phase
transition line in the QCD phase boundary belongs to
the same universality class of the 3-dimensional Ising
model [8–11]. In the chiral limit, if UA(1) symmetry
is broken, the chiral phase transition of a 2-flavor QCD
theory is argued to belong to the same universality class
of the 3-dimensional O(4) spin model [8, 12]. The crit-
ical behavior of the net-baryon number fluctuations is
expected to be controlled by the universal O(4) symme-
try group [13]. Because of lattice artifacts in calculations
with the staggered fermions, the 2- and (2+1)-flavor chi-
ral phase transitions may belong to the same universality
class with the O(2) spin model [14–16]. So the critical
behavior of cumulant and higher cumulant ratios in the
3-dimensional Ising, O(2) and O(4) spin models are help-
ful.

In this paper, we first introduce the cumulants in the
O(N) spin models and the corresponding relations of the
3-dimensional Ising and O(4) spin models to the QCD.
Then through the Monte Carlo simulations without ex-
ternal magnetic field, we calculate the cumulants and
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higher cumulant ratios of the order parameter in the 3-
dimensional Ising, O(2) and O(4) spin models. The crit-
ical behavior of the order parameter, the susceptibility,
the ratios of the third, fourth and sixth to second or-
der cumulant is presented and discussed, respectively.
Meanwhile, the behavior of higher cumulant ratios in
the 3-dimensional Ising, O(2) and O(4) spin models is
compared. Finally, the conclusions are drawn.

2 Fluctuations of order parameter in the
O(N) spin models

The O(N)-invariant nonlinear σ-models (O(N) spin
model) are defined as,

βH=−J
∑

〈i,j〉

~Si·~Sj− ~H ·
∑

i

~Si. (1)

H is the Hamiltonian. J and ~H are both reduced quanti-
ties which already conclude β=1/T . J is an interaction
energy between the nearest-neighbor spins 〈i,j〉. In our

simulation, we set J = β. ~H is the external magnetic
field. ~Si is a unit vector of N -components at ith site
of a d-dimensional hyper-cubic lattice with a longitudi-
nal (parallel to the magnetic field ~H) and a transverse
component

~Si=S
‖
i ~eH+~S⊥

i , (2)

where

~eH= ~H/H. (3)

H is the magnitude of the external field. The casesN=1,
2, 4 and d=3 are the 3-dimensional Ising, O(2) and O(4)
spin models, respectively. The energy of a spin configu-
ration is defined as [17]

E=−
∑

〈i,j〉

~Si·~Sj . (4)

The average of the longitudinal spin components is

S‖=
1

V

∑

i

S‖
i , (5)

where V =L3 and L is the number of spins in each direc-
tion.

Then the partition function is

Z(T,H)=

∫
∏

i

dNSiδ(~S
2
i −1)exp(−βE+HV S‖). (6)

The (reduced) free energy per unit volume is

f(T,H)=−
1

V
lnZ. (7)

The derivatives of the free energy density to H are as
follows,

χn=−
∂n
f

∂Hn

∣

∣

∣

∣

T

. (8)

They are related to the cumulants of order parameter.
For instance,

χ1=〈S‖〉,

χ2=V 〈δS‖2
〉,

χ3=V
2〈δS‖3

〉,

χ4=V
3(〈δS‖4

〉−3〈δS‖2
〉2),

χ6=V
5(〈δS‖6

〉−10〈δS‖3
〉2+30〈δS‖2

〉3−15〈δS‖4
〈δS‖2

〉).

(9)

Where
δS‖=S‖−〈S‖〉, (10)

χ1 and χ2 are respectively the magnetization(order pa-
rameter)M and longitudinal susceptibility χL. Owing to
the spatial rotation symmetry of the O(N) groups, the
mean value of the order parameter is always zero with-
out an external magnetic field. In this case, the order
parameter definition should be resorted to [18], such as

M=

〈∣

∣

∣

∣

∣

1

V

∑

i

~Si

∣

∣

∣

∣

∣

〉

. (11)

The scaling form of the critical part of the free energy
in the second order phase transition can be written as

fs(t,h)=l
−3fs(l

ytt,lyhh), (12)

where t is the normalized reduced temperature and h is
the normalized reduced magnetic field

t=(T−Tc)/T0, h=H/H0. (13)

T0 and H0 are the normalized parameters. yt and yh are
the thermal and magnetic exponents, respectively. For
the purpose of mapping the results of the 3-dimensional
Ising model to that of QCD, the linear ansatz as follows
is suggested [19–21]

t=T−Tcp+a(µ−µcp), h=b(T−Tcp)+µ−µcp. (14)

Tcp is the temperature and µcp is the chemical potential
at the QCD critical point. a and b have to be determined
from QCD. We can get that

∂/∂µ=
−b

1−ab

∂
∂t

+
1

1−ab

∂
∂h
,

∂/∂T=
1

1−ab

∂
∂t

−
a

1−ab

∂
∂h
.

(15)

Through the different orders of derivatives of free en-
ergy density to µ, we can get the fluctuations of particle
number, which can be measured by experiments. The
exponent yh is bigger than yt in the 3-dimensional Ising
model. Their ratio yh/yt=γ+β=25/16 [22]. So ∂/∂h will
be more singular than ∂/∂t. Although we don’t know the
values of a and b, the particle number fluctuations are
dominated by the derivatives of the free energy density
to h, that’s the order parameter fluctuations in the 3-
dimensional Ising model.
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The scaling form of the critical part of the free energy
density in the chiral phase transition may be

fs(T,µq,h)

T 4
=Ah(1+1/δ)ff(z), z=t/h1/βδ, (16)

where β and δ are critical exponents from the 3-
dimensionalO(4) spin model, ff(z) is the scaling function
of the free energy density and

t≡
1

t0

(

T−Tc

Tc

+κµ

(µq

T

)2
)

, h≡
1

h0

mq

Tc

. (17)

Here Tc is the chiral phase transition temperature. From
Eq. (17), we note that the derivatives of free energy den-
sity to h in the O(4) spin model are equal to the deriva-
tives of free energy density tomq, which is the fluctuation
of order parameter, or the chiral condensate

〈ψ̄ψ〉=−
NF

4

∂f
∂mq

. (18)

So the critical fluctuations of order parameter from the
3-dimensional O(4) spin model can reflect the chiral con-
densate fluctuations in the QCD chiral phase transition.
When it comes to the chiral limit, the quark masses van-
ish and the chiral symmetry is restored. It corresponds
to the magnetic field in the 3-dimensional O(4) model
being zero.

3 The critical behavior of higher cumu-
lant ratios in the 3-dimensional Ising,
O(2) and O(4) spin models

The Monte Carlo simulations of the 3-dimensional
Ising, O(2), and O(4) spin models in a finite system are
performed by the Wolff algorithm with helical bound-
ary conditions [23]. We choose a sufficiently large size

for each case which can present the qualitative features
well, that’s L = 24 for the Ising model and L= 20 for
the O(2) and O(4) spin models. In order to observe and
compare the trend of cumulants and their ratios varying
with T/Tc in different models, we divide the cumulants
or their ratios by their maximum values and rescale the
values of χ2, χ3/χ2, χ4/χ2 and χ6/χ2 to plot them. Here
Tc is the critical temperature of each model. In our cal-
culation, we use approximate values 4.51 [18], 2.202 [24]
and 1.068 [24] for Tc in the 3-dimensional Ising, O(2) and
O(4) spin models, respectively.

The order parameter (M) and susceptibility (χ2)
from the 3-dimensional Ising, O(2) and O(4) spin models
is presented in Fig. 1. The behavior of M in these three
spin models is similar. M decreases with the increas-
ing temperature. When the temperature is much lower
than Tc, the system is ordered, all of the spins align
to the same direction, and the value of M approaches
one. When the temperature is much higher than Tc, the
system is disordered, the spins point to a direction at
random, and the value of M approaches zero. The qual-
itative behavior of χ2 in the three models is similar, too.
There is a pronounced cusp near Tc. The peak is also
observed in the chiral susceptibility in the 2-flavor QCD
lattice calculation and the chiral effective model with the
Polyakov loop [25, 26].

The ratios of the third (χ3/χ2) and fourth (χ4/χ2)
to the second order cumulant in the 3-dimensional Ising,
O(2) and O(4) spin models are shown in Fig. 2.

The qualitative behavior of χ3/χ2 is the same in the
three models. It changes dramatically the sign near Tc.
It is negative when T <Tc, and becomes positive when
T>Tc. The behavior of χ3/χ2 from the 3-dimensional
Ising model is consistent with that in Ref. [27]. The third

Fig. 1. (color online) The temperature dependence of the order parameter (M) and susceptibility (χ2) in the vicinity
of critical temperature from the 3-dimensional Ising O(1), O(2) and O(4) spin models.
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Fig. 2. (color online) The temperature dependence of χ3/χ2 and χ4/χ2 in the vicinity of critical temperature from
the 3-dimensional Ising (O(1)), O(2) and O(4) spin models.

Fig. 3. (color online)The temperature dependence
of χ6/χ2 in the vicinity of critical temperature
from the 3-dimensional Ising (O(1)), O(2) and
O(4) spin models.

order cumulant reflects the skewness of the distribution.
Like the Gaussian distribution, it’s symmetrical, then its
skewness is zero. If the left tail of a distribution is longer
than the right one, the third order cumulant will be neg-
ative. If the right tail is longer, the third order cumulant
will be positive. The qualitative behavior of χ4/χ2 is
the same in the three models. It oscillates greatly with
temperature near Tc. They are negative when T ap-
proaches Tc from T > Tc side. This is consistent with
the prediction in Ref. [6], which said the fourth order
cumulant will be negative when the system approaches
the critical point from the crossover side. The fourth

order cumulant reflects the kurtosis of the distribution.
Gaussian distribution is also the reference. Its kurtosis
is zero. If a distribution is less sharp than the Gaussian
distribution, its fourth order cumulant will be negative.
If it’s sharper, its fourth order cumulant is positive.

The ratios of sixth to second order cumulant from
the 3-dimensional Ising, O(2) and O(4) spin models are
presented in Fig. 3.

Its generic structure in the three models is similar. It
has two positive maximums and a pronounced negative
minimum between them close to the transition region.
Comparing χ3/χ2, χ4/χ2 and χ6/χ2, we found that the
higher the order of the cumulant, the more complicated
the structure and quicker to get equilibrium after leaving
the critical point.

From the simulation results, we already know that
the behavior of the same order cumulant or higher order
cumulant ratio is similar in the three models. Now let’s
analyze it briefly from the theory. As the order parame-
ter in the spin models, it will approach one and zero in
the ordered and disordered phases, respectively, which
leads to the similar behavior of the order parameter. In
the thermodynamical limit, the susceptibility diverges as
χ2∼|t|−γ in the vicinity of the critical point. The value
of γ is 1.253(4) [22], 1.3192 [28] and 1.4668 [29] for the
3-dimensional Ising, O(2) and O(4) spin models. Their
values are positive and close to each other. In a finite
system, the divergence will be weakened and become a
round peak. That’s why the behavior of χ2 is similar. All
of the cumulants of the order parameter are derivatives
of the free energy density with respect to the external
field; the behavior of the first and second order cumu-
lants is similar in these three models, so it’s not difficult
to understand the similar behavior of the higher order
cumulant ratios.
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4 Summary

In this paper, the critical behavior of the order pa-
rameter, susceptibility, ratios of the third, fourth and
sixth order cumulant to the second one are calculated
from the 3-dimensional Ising, O(2) and O(4) spin mod-
els at a given system size without external field. For each
order cumulant or higher cumulant ratios, its qualitative
critical behavior in these three models is the same. The
ratios of the third, fourth, and sixth order cumulant to

the second one change dramatically near the critical tem-
perature. They all have sign change and the higher the
order of the cumulant, the more complicated the struc-
ture. From the 3-dimensional Ising model, we know that
the sign changes of the cumulant ratios of baryon number
fluctuations may predict the critical signals in heavy-ion
collisions. For the 3-dimensional O(2) and O(4) spin
models, in order to guide the experiments, the deriva-
tives of free energy density to the temperature in a finite
lattice is ongoing.
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