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A dynamical approach to the exterior geometry
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Abstract: In this article, we assume that a cold charged perfect fluid is constructing a spherical relativistic star.

Our purpose is the investigation of the dynamical properties of its exterior geometry, through simulating the geodesic

motion of a charged test-particle, while moving on the star.
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1 Introduction

The einstein field equation leads to the solutions sat-
isfying the definition of a perfect fluid; a homogenous
isotropic mass and energy distribution with no viscosity,
such as Friedmann-Lemâıtre model (for a good review see
Ref. [1]). Moreover, it also provides the chance to investi-
gate the interior distributions of the perfect fluid through
the energy-momentum tensor, not forgetting that the
energy-momentum tensor can actually be extracted from
charged bodies bearing interior pressure.

A relativistic star is supposed to consist of such a
fluid either charged or with axial rotation [2]. In order
to find out the relativistic, isotropic mass and charge the
interior solution has been suggested by B. Guilfoyl [3].

In this article, we are about to form a static charged
relativistic star using these so-called solutions; in addi-
tion, studying the dynamical properties of the exterior
geometry via a rotating test-particle is included.

It goes without saying that in general relativity
geodesic motions are of great importance. This is be-
cause they make valuable predictions about cases such
as precessions of periastron in planetary orbits and the-
oretical explanations for light deflection in gravitational
fields.

Furthermore, there is a lot of researches which has
been dedicated to the study of geodesic motions in differ-
ent kinds of geometrical background, which could be de-
rived from general relativity, for example, Schwarzchild,
Schwarzchild-de Sitter, Reissner-Nordström and Kerr ge-
ometries (see Refs. [4]–[8] and an important text book
[9]). The exact equations of motion have also been de-
rived [10], and lots of further theoretical predictions pro-
vided (see Refs. [11]–[17]).

In this case we are considering Reissner-Nordström
(RN) geometry as the exterior geometry of a static
charged relativistic star. The procedure that we are go-
ing through in this paper concerns the process in which
charged particles get trapped in gravitational and elec-
trical fields of relativistic stars.

The chosen approach is a Lagrangian formalism and
numerical simulations also have been involved. In order
to do so, three classes of solutions presented by Guilfoyl
have been utilized to construct a relativistic star and
to compare the pertinent geodesic behaviors of the test
charged particle.

The article is organized as follows: Section 2 contains
dynamical preliminaries for a charged particle in RN ge-
ometry. Section 3 considers a brief review on Guilfoyl’s
interior solutions. In Section 4, we introduce the La-
grangian formalism. Finally, Sections 5 and 6, consist
of the simulations of the charged particle’s motions on
various types of relativistic stars.

2 Charged particle in RN geometry

First, let us consider a spherical source which has
been schematically illustrated in Fig. 1. It indicates the
charged star, considered to be the gravitational source,
with R0 being the radius, and the total mass and charge
being m0 and q0 respectively. A test-particle which is
moving on this star, is assumed to travel on the RN
geodesics. The RN geometry is a static spherically sym-
metric vacuum solution for the Einstein equations in four
dimensions (d=4) and is defined by the metric:

ds2=−c2A(r)dt2+B(r)dr2+r2dθ2+r2sin2θdφ2, (1)

in which the variable coefficients are:
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A(r)=
1

B(r)
=1−2Gm0

rc2
+

q2
0G

4πε0r2c4
,

where G stands for the gravitational constant and c for
the speed of light. In order to simplify the calculations,
we use geometrical units, fixing:

G=c=
1

4πε0
=1.

Fig. 1. A schematic illustration of a charged spher-
ical star and rotating test charged particle.

According to these units, one can relate length di-
mensions to quantities like mass and electric charge, i.e.
(see Ref. [18] Appendix 4):

[mass]=[m0]=`,

[electric charge]=[q0]=`,

where ` notates the length dimension. Since c and G are

supposed to be 1, the remaining ratios
2m0

r
and

q2
0

r2
, be-

come dimensionless. These assumptions are commonly
used in general relativity. Taking these into account, one
can rewrite (1) as:

ds2 = −
(

1−2m0

r
+
q2
0

r2

)

dt2+

(

1−2m0

r
+
q2
0

r2

)−1

dr2

+r2dΩ2. (2)

We will use this metric in further considerations.
If we write the Killing equations for Killing vector

Xµ, as [19]:

(∇µX)ν+(∇νX)µ=0, (3)

one can obtain 10 Killing vectors for the spacetime de-
fined by metric (2). Therefore, since for the RN space-
time we have d=4, the number of Killing vectors would

be
d(d+1)

2
. Due to this fact, the RN spacetime has

Killing symmetry and we can define energy and obtain
time-like geodesics.

By considering the characteristics of the test-particle
(m stands for the mass and q for the charge), one can
obtain the potential and energy conditions, using the
Hamilton-Jacobi equation of wave crests [20]:

gµν(Pµ+qAµ)(Pν+qAν)+m
2=0. (4)

Pµ is the momentum 4-vector1)

Pµ=gµσP
σ=gµσ

dxσ

dλ
. (5)

Here λ is the affine parameter of the trajectory. The
metric components gµν can be derived from the exterior
geometry of the source, the RN metric (2). Also the
vector potential Aµ for the static charged source will be:

Aµ=(ϕ(r),0,0,0), (6)

where ϕ(r)=
q0

r
is the scalar electrical potential, outside

the star, producing a scalar field within the spacetime.
One can define the two conserved quantities as:

E=−P0, (7)

the energy, and
L=Pφ (L>0), (8)

the angular momentum. Here we consider θ =
π

2
, for

which the particle’s motion is confined to the equatorial
rotations. Therefore

P θ=
dθ

dλ
=0.

Substituting the metric (2) in (4) yields:

−

(

E−qq0
r

)2

1−2m0

r
+
q2
0

r2

+

(

1−2m0

r
+
q2
0

r2

)−1(
dr

dλ

)2

+
L2

r2
+m2=0,

or
(

dr

dλ

)2

=
(

E−qq0
r

)2

−
(

1−2m0

r
+
q2
0

r2

)(

m2+
L2

r2

)

. (9)

Eq. (9) can be rewritten as:
(

dr

dλ

)2

=

[

E−
(

qq0

r
−
√

(

1−2m0

r
+
q2
0

r2

)(

m2+
L2

r2

)

)]

×
[

E−
(

qq0

r
+

√

(

1−2m0

r
+
q2
0

r2

)(

m2+
L2

r2

)

)]

.

1) Here we use the notation in Ref. [20], in which in §25.3 the 4-momentum has been defined like Eq. (5).
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We introduce the potential, felt by the test-particle
as:

V (r)=
qq0

r
+

√

(

1−2m0

r
+
q2
0

r2

)(

m2+
L2

r2

)

, (10)

to be assured that positive potential is available. To dis-
cuss the motion of the test-particle also, we need the
rate of variation of rotation angle φ with respect to r.
Previously we defined:

gφφP
φ=L⇒ dφ

dλ
=
L

r2
.

Substituting in Eq. (9) yields:
(

dr

dφ

)2

=
r4

L2

[

(

E−qq0
r

)2

−
(

1−2m0

r
+
q2
0

r2

)(

m2+
L2

r2

)]

.

(11)
Solutions to equations like (11), have been obtained

using the Weierstrass function and elliptic integrals in
[10], however in this context, we use a Lagrangian for-
malism instead of the geodesic equations.

For different values of L and E, the test-particle ex-
periences different types of motions. The motion of the
particle, depends on its energy, for sets of solutions for

E−V (r)=0. The RN spacetime allows three types of or-
bits; for one zero, we will have scape orbits, for two zeros,
periodic bound orbits are available, and for three zeros,
we will have scape/capture orbits and periodic bound
orbits.

The potential that the particle is going through is
also worthy of investigation. The potential may have
some extremum points, as below:

dV (r)

dr

∣

∣

∣

∣

∣

(r=re)

=0. (12)

We can rewrite the potential in Eq. (10) as:

V (r)=C(r)+

√

g(r)

(

m2+
L2

r2

)

. (13)

We have C(r) =
qq0

r
and g(r) = 1− 2m0

r
+
q2
0

r2
. Using

(13) in (12) forms the following differential equation:

C ′

√

g

(

m2+
L2

r2

)

+
1

2

[

g′
(

m2+
L2

r2

)

−2
gL2

r3

]

=0.

Solving the above equation for L yields:

L=r

(

2r2gC ′2−r2g′2m2+2g′m2gr±2
√

r4g2C ′4−2r3g2C ′2g′m2+4g3r2m2C ′2

r2g′2−4g′rg+4g2

) 1
2

. (14)

This solution, corresponds to the stable orbits of the
test-particle around the star, where the potential has its
extremum points. The expression for L in Eq. (14) indi-
cates that, for stable orbits regardless of the energy of the
particle, the total angular momentum, for definite values
of mass, charge and radius of the source, can take only
definite values. As we will see, the energy of the particle
is peculiar, when we work with a particular potential.

We are going to discuss the types of motions in Sec-
tion 5, considering different interior mass and charge dis-
tributions for the star. We shall introduce these interior
solutions in the next section.

3 Weyl-type interior solutions for a

charged perfect fluid

In this article, a relativistic star, is defined to be a
charged spherically symmetric cold perfect fluid. Such a
fluid is a solution of the Einstein field equations

Rµν−
1

2
gµνR=8π(Tµν+Eµν), (15)

and the Maxwell equations

∇νF
µν=4πJµ, (16)

for a charged isotropic mass distribution. In Eq. (15),
Eµν is the electromagnetic stress-energy tensor, defined

as [20]:

4πEµν=F
ρ
µFνρ−

1

4
gµνFρσF

ρσ, (17)

in which

Fµν=∇µAν−∇νAµ,

is the antisymmetric electromagnetic field strength ten-
sor. The energy-momentum tensor for an isotropic mass
distribution with pressure is:

Tµν=











ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p











, (18)

where ρ is the matter density and p is the fluid pressure.
The following spherically symmetric metric is assumed
to explain the interior geometry of the perfect fluid:

ds2=−ω2dt2+ξ(r)2dr2+r2dΩ2, (19)

in which the metric potential

ω(ϕ)2=a+bϕ+ϕ2, (20)

by Weyl’s assumption [22], only depends on the electric
potential ϕ(r), and a and b in (20) are constants.

The non-zero components of Maxwell Eq. (16) for
metric (19), determine the total charge inside a volume
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with radius r. We have [23]:

Q(r)=
r2ϕ′(r)

ω(ϕ)ξ(r)
=4π

∫r
0

σ(r)r2ξ(r)dr, (21)

in which σ(r) is the volume charge density. Since outside
the star, the geometry obeys the RN metric (2), Eq. (21)
can be rewritten as

Q(r)=r2ϕ′(r)[A(r)B(r)]−
1
2 .

According to the Weyl’s assumption in (20), this
gives:

ϕ′(r)=∓ A′(r)
√

b2+4A(r)−4a
.

Therefore

Q(r)=∓A′(r){A(r)B(r)(b2+4A(r)−4a)}− 1
2 . (22)

Now to realize what the interior solutions of a rela-
tivistic star really are, let us consider another star, with
radius r0 (r0=R0+δr), charge Q0 and mass M which are
considered to be known values. This star (Fig. 2) is not
the one that will be used as the massive source for the
test-particle to move on. It is only used for discussing the
interior solutions and it is in fact, a boundary condition
to derive the desired constants in the interior solutions.
However, the massive source in Fig. 1 has the same dis-
tributions but in lower dimensions. The radius r0 will be
considered to be the same for all cases, therefore the stars
under discussion will have the same geometrical appear-
ance and obviously the amounts Q0 and M will differ for
different interior solutions. Now for the star in Fig. 2,
the continuity condition at r=r0 implies that:

A(r0)=
1

B(r0)
=1−2M

r0
+
Q2

0

r20
,

in which Q0=Q(r0). Therefore, from Eq. (22) we obtain:

M

Q0

=±1

2

√

b2+4(1−aQ2
0), (23)

which implies that for a=b=0 we have:

M=|Q0|.
This is the condition concerning a Majumdar-

Papapetrou star for a Weyl-type metric potential. The
pressure for these stars is zero; in this case the relation
between the metric potential ω2 in (20) and the electrical
potential ϕ(r) is always a perfect square [24, 25]. Also we
will discuss the motion of the test-particle around these
stars in Section 5.

In Ref. [3], Guilfoyl has presented some interesting
Weyl-type interior solutions for a spherically symmetric
charged perfect fluid. He based his solutions on two pre-
suppositions:

1) The Schwarzchild condition which implies:

8πT00−8πE00=
3

R2
=constant,

Fig. 2. A star with higher dimensions, having the
same distributions as Fig. 1, but with known val-
ues for charge and mass.

or

8πρ(r)+
Q(r)2

r4
=

3

R2
=constant. (24)

2) The expression for the radial part of metric (19):

ξ(r)2=

(

1− r2

R2

)−1

. (25)

In these two presuppositions, the quantity
1

R2
, is a

constant that must be determined using the boundary
conditions at r= r0 (in Fig. 2). We now bring up two
classes of Guilfoyl’s solutions which we will use later to
form the test-particle’s potential [3]:

3.1 The case of Class I

In this case, the metric potential is considered to have
the spherical form:

aω2=b+(c+ϕ)2, (26)

where c is a constant. We call this the Weyl-Guilfoyl
metric potential as it is in Ref. [23]. Both using the RN
limit in (19) and also considering (26) we have:

M

Q0

=
Q0

ar0
(a−1)± 1

ar0

√

r20(a−b)+Q2
0(1−a). (27)

As we can see, while a=1 and b=0 we have M=|Q0|
which is the Majumdar condition. For the expression
(26), two sets of solutions have been introduced:

Class Ia: a=
1

2
, b=0























ω2=e
√

2ψ(r)

Q(r)=±kr
3

2

8πρ(r)=
3

R2
−k

2r2

4

. (28)

The function ψ(r) is defined as:

ψ(r)=l−kR2

(

1− r2

R2

) 1
2

. (29)
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Also the constants
1

R2
, k and l can be determined,

using the boundary conditions at r=r0 (Fig. 2) as below:

k =
2|Q0|
r30

, (30)

l =

(

M

Q0

−Q0

2r0

)−1(

1−2M

r0
+
Q2

0

r20

) 1
2

+
√

2ln

(

1−2M

r0
+
Q2

0

r20

)

, (31)

1

R2
=

2

r30

(

M−Q2
0

2r0

)

. (32)

Class Ib: a=1, b<0



















ω2=−btan2[
√
−bψ(r)]

Q(r)=±
√
−bkr3 sec[

√
−bψ(r)]

8πρ(r)=
3

R2
+bk2r2 sec2[

√
−bψ(r)]

. (33)

The solution set Class Ib, are confirmed for

b60⇔M>|Q0|.

The corresponding coefficients are:

b=1−
(

M

Q0

)2

, (34)

k=
Q2

0

r30

(

M−Q
2
0

r0

)−1

, (35)

l =

[

(

M

Q0

)2

−1

]− 1
2

sec−1





(

M

Q0

−Q0

r0

)

{

(

M

Q0

)2

−1

}− 1
2





+

(

1−2M

r0
+
Q2

0

r20

) 1
2
(

M

Q0

−Q0

r0

)−1(
2M

Q0

−Q0

r0

)−1

.

(36)

3.2 The case of Class II

In this case Guilfoyl assumed that the metric poten-
tial ω2 has the following form:

√
2

3
aω

3
2 =c+ϕ(r). (37)

The interior solutions for this case are:






























ω2=
1

a4
[ln
(

−a2ψ(r)
)

]2

Q(r)=± kr3√
2ψ(r)

[−ln
(

−a2ψ(r)
)

]−
1
2

8πρ(r)=
3

R2
− k2r2

2ψ(r)2
[−ln

(

−a2ψ(r)
)

]−1

. (38)

Also the constant coefficients are:

a =
√

2

(

M

Q0

−Q0

r0

)−1(

1−2M

r0
+
Q2

0

r20

) 1
4

, (39)

k =
1

r30

(

M−Q
2
0

r0

)

exp

[

−2

(

M

Q0

−Q0

r0

)−2(

1−2M

r0

+
Q2

0

r20

)]

, (40)

l =
1

2

(

M

Q0

−Q0

r0

)(

1−2M

r0
+
Q2

0

r20

) 1
2

[

(

M

Q0

−Q0

2r0

)−1

−
(

M

Q0

−Q0

r0

)(

1−2M

r0
+
Q2

0

r20

)−1
]

×exp

[

−2

(

M

Q0

−Q0

r0

)−2(

1−2M

r0
+
Q2

0

r20

)

]

. (41)

We use these interior solutions in Section 5, to form
different types of relativistic stars.

4 Lagrangian formalism for a charged

particle moving in RN spacetime

Now let us consider a Lagrangian like:

L=
1

2
muiu

i−V (r), (42)

where ui =
dxi

dλ
is the velocity 4-vector for the test-

particle and V (r) is the potential in (10). One can write
down this equation for the RN spacetime as:

L=
1

2
mgii(u

i)2−V (r), (43)

in which the diagonal components of the metric (2) are
used. Therefore the Lagrangian is a function like:

L≡L(t,r,θ,φ,ṫ,ṙ,θ̇,φ̇). (44)

Here the dot stands for differentiation with respect
to affine parameter λ in geodesic motion. Using the RN
metric (2) yields:

L =
1

2
m

(

−1+2
m0

r
−q0

2

r2

)

ṫ2+
1

2
mṙ2

(

1−2
m0

r
+
q0

2

r2

)−1

+
1

2
mr2θ̇2+

1

2
mr2 (sin(θ))

2
φ̇2−qq0

r

−
√

(

1−2
m0

r
+
q0

2

r2

)(

m2+
L2

r2

)

. (45)

Since we take the geometrical units, we have dλ=dτ ,
where τ is the proper time. The action in this spacetime,
therefore, is defined by [21]:

S=

∫
L(t,r,θ,φ,ṫ,ṙ,θ̇,φ̇)dτ, (46)
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turning to the following one for equatorial rotations:

S=

∫
L(t,r,φ,ṫ,ṙ,φ̇)dτ. (47)

Varying this action, we can obtain the Euler-
Lagrange equation of motion in RN spacetime:

∂L
∂xi

− d

dτ

(

∂L
∂ẋi

)

=0. (48)

For i=0, 1, 3, this leads to three equations which to-

gether are the equations of equatorial motion
(

θ=
π

2

)

for the test-particle, moving in RN geometry. Using the
definition of the potential in (10), and the Lagrangian
(45) in (48) we have:






−2

m0

d

dτ
r(τ)

(r(τ))
2 +2

q0
2

d

dτ
r(τ)

(r(τ))
3







d

dτ
t(τ)+

(

−1+2
m0

r(τ)
− q0

2

(r(τ))
2

)

d2

dτ 2
t(τ)=0,

−m
(

d

dτ
r(τ)

)






2
m0

d

dτ
r(τ)

(r(τ))
2 −2

q0
2

d

dτ
r(τ)

(r(τ))
3







(

1−2
m0

r(τ)
+

q0
2

(r(τ))
2

)−2

+m
d2

dτ 2
r(τ)

(

1−2
m0

r(τ)
+

q0
2

(r(τ))
2

)−1

−1

2
m

(

−2
m0

(r(τ))
2 +2

q0
2

(r(τ))
3

)(

d

dτ
t(τ)

)2

+
1

2
m

(

d

dτ
r(τ)

)2(

2
m0

(r(τ))
2−2

q0
2

(r(τ))
3

)(

1−2
m0

r(τ)
+

q0
2

(r(τ))
2

)−2

−mr(τ)
(

d

dτ
φ(τ)

)2

− qq0

(r(τ))
2 +

1

2

[
√

(

1−2
m0

r(τ)
+

q02

(r(τ))
2

)(

m2+
L2

(r(τ))
2

)

]

×
[(

2
m0

(r(τ))
2−2

q0
2

(r(τ))
3

)(

m2+
L2

(r(τ))
2

)

−2

(

1−2
m0

r(τ)
+

q0
2

(r(τ))
2

)

L2(r(τ))
−3

]

=0,

2r(τ)

(

d

dτ
φ(τ)

)

d

dτ
r(τ)+(r(τ))

2 d2

dτ 2
φ(τ)=0. (49)

Using various interior solutions, in the next section
we solve these equations of motion numerically, for a par-
ticle moving on a relativistic star (Fig. 1), and obtain the
shape of possible orbits due to different available poten-
tials.

5 Moving charge on a relativistic star:

various interior solutions

Now let us come back to our original source, i.e. the
star with radius r=R0 (Fig. 1). We will illustrate the
orbits of a massive charged particle, moving around this
star. The interior distributions in the star, obey the
three cases of interior solutions discussed in Section 3.
Since we have discussed the interior solutions for a star
with radius r0, for the total charge amount of the star in
Fig. 1 we have:

q0=Q(R0)=Q(r0−δr), (50)

in which Q(r) is one of the interior solutions introduced
in Section 3. Also for this star’s total mass we have [3]:

m0=
1

2

∫R0

0

r2dr

(

8πρ(r)+
Q(r)2

r4

)

+
q2
0

2R0

.

Fig. 3. The potential for a test-particle moving
on a relativistic star, with the interior solution
Class Ia. The illustration is plotted for Q0=0.85,
q=0.18 ,m=0.2 , L=0.225 ,r0=2, δr=0.1r0. The
unit of length along the coordinate axis is M .

Using Eq. (24) this can be summarized as:

m0=
(r0−δr)3

2R2
+

q2
0

2(r0−δr)
, (51)
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where
1

R2
was determined in (32). In the rest of this

section we will discuss different sources.

5.1 For Class Ia

In this case the total charge q0 can be derived from
the general formula (50) using Class Ia solution, namely
Eqs. (28)–(32):

q0=
Q0(r0−δr)3

r03
. (52)

The total mass m0 has the same relation as (51). We
should notice that in our investigations we suppose that
the final amounts of charge and mass, Q0 and M , have

the same ratio

(

Q0

M

)

in all considered cases, to facili-

tate the comparison of interior solutions. The potential

in (10), for an intermediate angular momentum, is shown
in Fig. 3. Falling in this potential, the test-particle can
access three types of orbits, due to the total energy E

(notated in Fig. 3).
1) Periodic bound orbits
This type of orbit, is often called planetary orbit,

especially when the shape of trajectories, is elliptical.
Fig. 4 shows some possible bound orbits for different val-
ues of initial energy E.

2) Hyperbolic motion
For particles coming from infinity, hyperbolic motions

or escape orbits are available. That is when E−V (r)=0
possesses only one zero. Fig. 5 shows some possible types
of escape orbits, for which the particle comes to the vicin-
ity of the star, having a definite minimum distance, and
then repels again to the infinity.

Fig. 4. The possible bound orbits (or planetary orbits) for a test-particle moving on a star with interior solution
Class Ia, using different initial points of approach and different initial energies: (a) r=rm, E=ε1; (b) r=2.7, E=ε1;
(c) r=7, E=ε2; (d) r=3, E=ε3; (e) r=4, E=ε4; (f) r=9, E=0.36; (g) r=60, E=10.

Fig. 5. The possible escape orbits (or hyperbolic motions) for a test-particle approaching a star with interior solution
Class Ia, using different initial points of approach and different initial energies: (a) r=2.8, E=ε3; (b) r=8, E=ε4;
(c) r=10 ,E=ε2; (d) r=20, E=0.9.
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Fig. 6. The terminating orbits (or capture) for a
test-particle approaching a star with interior so-
lution Class Ia, using different initial points of ap-
proach and different initial energies: (a) r=2.197,
E=ε4; (b) r=rm, E=0.9.

3) Terminating orbits
Having high energies, when the particle moves in the

vicinity of the star, terminating orbits are also possi-
ble. This type of orbit is unstable and terminates when
the particle falls on the star’s surface (being captured).
Fig. 6 shows this type of motion for different energies.

5.2 For Class Ib

The total charge of the star, using Eqs. (33)–(36) is:

Fig. 7. The potential for a test-particle moving
on a relativistic star, with the interior solution
Class Ib. The illustration is plotted for Q0=0.85,
q=0.18, m=0.2, L=0.225, r0=2, δr=0.1r0. The
unit of length along the coordinate axis is M .

q0 = r−3
0

[

M−Q
2
0

r0

]−1
√

M 2

Q2
0

−1Q0
2(r0−δr)3 sec

(
√

M 2

Q2
0

−1

{

sec−1

(

[

M

Q0

−Q0

r0

]

1
√

M 2

Q2
0

−1

)

1
√

M 2

Q2
0

−1

+

√

1−2
M

r0
+
Q0

2

r20

(

M

Q0

−Q0

r0

)−1(

2
M

Q0

−Q0

r0

)−1

−Q0

√

1−(r0−δr)2Q0

(

2
M

Q0

−Q0

r0

)

r−3
0

(

M−Q0
2

r0

)−1(

2
M

Q0

−Q0

r0

)−1
})

. (53)

Fig. 8. The possible bound orbits (or planetary orbits) for a test-particle moving on a star with interior solution
Class Ib, using different initial points of approach and different initial energies: (a) r = rm, E = ε5; (b) r =2.75,
E=ε5; (c) r=7.4 ,E=ε5; (d) r=7.5, E=ε6; (e) r=2.9, E=ε7; (f) r=rm, E=ε7; (g) r=11, E=0.6.
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Fig. 9. The possible escape orbits (or hyperbolic
motions) for a test-particle approaching a star
with interior solution Class Ib, using different ini-
tial points of approach and different initial ener-
gies: (a) r=10, E=ε5; (b) r=10, E=ε7.

Utilizing the same data which were used to plot the
potential in Fig. 3, can lead us to the potential for Class
Ib, shown in Fig. 7. For a particle moving on a star
with Class Ib as the interior solutions, the so-called three

types of orbits are also available. The periodic bound or-
bits (shown in Fig. 8), the scape orbit (shown Fig. 9) and
the capture (shown in Fig. 10).

Fig. 10. The terminating orbits (or capture) for a
test-particle approaching a star with interior so-
lution Class Ib, using different initial points of ap-
proach and different initial energies: (a) r=2.725,
E=ε5; (b) r=2.729, E=ε7; (c) r=4.5, E=0.3.

5.3 For Class II

The total charge in this case, using Eqs. (38)–(41) is:

q0 = (−r20+2Mr0−Q2
0)(2Mr0−Q2

0)Q
2
0

√
2(r0−δr)3

×
(

2−Xr20Q2
0+XQ

2
0Mr0−XQ4

0+2XM 2r20+2Y Q2
0r

2
0−4Y Q2

0Mr0+2YQ4
0

)−1

×
[

−r80 ln

(

− r20X

(Mr0−Q2
0)(2Mr0−Q2

0)(−r20+2Mr0−Q2
0)

{

−2Xr20Q
2
0

+XQ2
0Mr0−XQ4

0+2XM 2r20+2YQ2
0r

2
0−4Y Q2

0Mr0+2YQ4
0

}

e
2Q2

0(−r2
0+2Mr0−Q2

0)

(Mr0−Q2
0)2

)]− 1
2

, (54)

in which

X=

√

−2Mr0−Q2
0−r20

r20
, Y =

√

−2r30M−r40−r20Q2
0−4r20δrM+2r0δrQ2

0+2δr2Mr0−δr2Q2
0

r40
.

Fig. 11. The potential for a test-particle moving
on a relativistic star, with the interior solution
Class II. The illustration is plotted for Q0=0.85,
q=0.18, m=0.2, L=0.225, r0=2, δr=0.1r0. The
unit of length along the coordinate axis is M .

The corresponding potential for the same data used
before, has been illustrated in Fig. 11. According to
this potential, the equation E−V (r) = 0 possesses only
one zero. Therefore, it is expected that the particle ex-
hibits only unstable orbits (escape and terminating or-
bits). However, for medium and high energies, when the
particle comes from infinity, the periodic bound orbits
are also available. All types of possible orbits have been
indicated in Fig. 12.

6 Motion of a charged particle on a

Majumdar-Papapetrou star

Our last discussion, belongs to the stars with a special
case of interior solutions Class Ia, corresponding to the
Weyl-Guilfoyle spherically symmetric metric potential in
Eq. (26). From Eq. (27) one can confirm that for such
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Fig. 12. The possible orbits for a test-particle mov-
ing on a star with interior solution Class II, using
different initial points of approach and different
initial energies: (a), (b) the periodic bound orbits
for r=15, E=ε8 and r=10, E=0.3; (c) the escape
orbit for r=20, E=ε8; (d) the terminating orbit
for r=8.3, E=ε8.

Fig. 13. The potential for a test-particle moving on
a Type 1 Majumdar-Papapetrou star. The inte-
rior solution is Class Ia considering the first case
l=+kR2. The illustration is plotted for Q0=−1,
q=0.18, m=0.2, L=0.124, r0=2, δr=0.1r0. The
unit of length along the coordinate axis is M .

metric, the conditions a=1 and b=0 form a star with
equal total mass and charge, i.e.

M=|Q0|.
This condition for a pressure-less charged perfect

fluid, is the Majumdar condition [24, 25]. In this case,

the relation between the metric potential ω(ϕ)2 and the
electric potential ϕ(r) is a perfect square:

ω(ϕ)2=(c+ϕ)2,

where c is a constant. In this section we generally investi-
gate the potential for a massive charged particle moving
on a Majumdar-Papapetrou star. In order to do so, we
consider the shrunk star (the inner circle in Fig. 1), to
apply the interior solution. We use also the Class Ia so-
lution with a = 1,b= 0 from Ref. [3]. The solution is:
Class Ia: a=1, b=0























ω2=−[ψ(r)]−2

Q(r)=∓ kr3

ψ(r)

8πρ(r)=
3

R2
− k2r2

ψ(r)2

, (55)

in which the function ψ(r) was defined in (29). Since
M= |Q0|, for this class of solutions, the constant coeffi-
cients are as follows:

k =
|Q0|
r30

(

1−|Q0|
r0

)−1

, (56)

l2 = k2R4, (57)

in which
1

R2
=

2|Q0|
r30

(

1−|Q0|
2r0

)

. (58)

As before we use the default solution of Q(r). Here
the default solution is the negative one. There would be
two cases:

I) The case l=+kR2 (Type 1):

Fig. 14. Periodic bound orbits for a test-particle
moving on a type 1 Majumdar-Papapetrou star,
using different initial points of approach when
E = 0: (a) circular orbits for r = 5, E = 0; (b)
r=20, E=0.

In this case the total charge of the star is:

q0=Q(r0−δr)=− k(r0−δr)3
(

l−kR2

√

1− (r0−δr)2

R2

) . (59)

Using Eqs. (55)–(57) we obtain:
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q0=− (−2r0+|Q0|)(r0−δr)3|Q0|
r40

[
√

r40−2|Q0|r30+r20Q2
0+4|Q0|r20δr−2r0δrQ2

0−2|Q0|δr2r0+δr2Q2
0

r40
−1

]−1

. (60)

Fig. 15. The escape orbits for a test-particle mov-
ing on a Type 1 Majumdar-Papapetrou star for:
r=40, E=0.

Fig. 16. The periodic bound orbits for higher en-
ergies for a test-particle moving on a Type 1
Majumdar-Papapetrou star taking: r = 18, E =
0.2.

The total mass can also be calculated using Eq. (51).
This leads us to conclude:

m0=|q0|,
which is predictable. The corresponding potential is il-
lustrated in Fig. 13. The minus part of the potential is of
no importance because we previously decided to consider
only the positive energies.

For E = 0 in Fig. 13, the escape orbits and peri-
odic bound orbits are available, which are illustrated in
Figs. 14 and 15.

Fig. 17. The potential for a test-particle moving on
a Type 2 Majumdar-Papapetrou star. The inte-
rior solution is Class Ia considering the first case
l =−kR2. The illustration is plotted for Q0 =1,
q=0.18, m=0.2, L=0.124, r0=2, δr=0.1r0. The
unit of length along the coordinate axis is M .

Fig. 18. The periodic bound orbits for a test-
particle moving on a Type 2 Majumdar-
Papapetrou star, using different initial points of
approach when E=0: (a) r=rm, E=ε9; (b) r=5,
E=ε10.

Also for higher energies, the periodic bound orbits
are possible (Fig. 16).

II) The case l=−kR2 (Type 2):
According to Eq. (59), the total charge is positive,

therefore using Eqs. (55)–(57) we have:

q0=m0=
(2r0−|Q0|)(r0−δr)3|Q0|

r40

[
√

r40−2|Q0|r30+r20Q2
0+4|Q0|r20δr−2r0δrQ2

0−2|Q0|δr2r0+δr2Q2
0

r40
+1

]−1

. (61)
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The potential in this case for the same data is plot-
ted in Fig. 17 as in the previous case. This potential
allows periodic bound orbits and escape orbit for the
test-particle (Figs. 18 and 19).

Fig. 19. The escape orbits for a test-particle mov-
ing on a Type 2 Majumdar-Papapetrou star for:
r=2.2, E=ε10.

One can discover that for the default relation forQ(r)
in Eq. (55), the total charge of the star, has the possibil-
ity to be negative or positive. This depends somewhat
on the mathematical relationship between the constant
coefficients l and R2. As we could see, this affects the
test-particle trajectories and changes its possibilities to
have various kinds of motions in each case.

7 Conclusion and discussion

Besides the differences between the shapes of orbits
on different types of relativistic stars, there are other
items, which can be used for more analytic comparisons.
One of them is the period of stable orbits corresponding
to the minimum energy Emin, coinciding with the min-
imum of the potential curve at rm. From Eqs. (7) and
(8), for example, the period of stable circular orbits in
Class Ia, will be (see Appendix A):

TIa=2π

r2m

[

C(rm)+

√

g(rm)

(

m2+
`2Ia
r2m

)

]

g(rm)`2Ia
, (62)

in which

`Ia=L|r=rm,

and rm is indicated in Fig. 3. We can notice that:

rm|Ib<rm|Ia,

and therefore

`II>`Ib>`Ia.

Note that, for the current data we have:

TII<TIb<TIa.

Another important item, useful to be compared be-
tween the cases, is the precession of periastron/apastron
in periodic bound (planetary) orbits. For stable orbits,
one can derive this precession as (see Appendix B):

∆φ=
2π

α
=2π

[

−6q2
0u

2
m+

q2q2
0

`2Ia
+6m0u

2
m−1−m

2q2
0

`2Ia

] 1
2

,

(63)
which has been derived for known angular momentum,
energy and the radius of stable orbits in Class Ia. We
can conclude that:

∆φ|Ib<∆φIa.

In this article, we considered a relativistic charged
perfect fluid as a relativistic spherical star, and reviewed
the Guilfoyl’s interior solutions, through comparing the
motion of a massive charged particle on such a star. We
investigated the effects of these interior solutions on the
exterior geometry, for various types of relativistic stars,
by studying the geodesic motions of a massive charged
test-particle. We showed how changes in distributed
charge and mass in a certain volume could affect the
dynamical properties of the exterior geometry. We also
plotted the potentials, and possible orbits, confirming
that each case may exhibit peculiar shapes of orbits.
We also discussed the special case of a pressure-less
Majumdar-Papapetrou star, and illustrated the poten-
tials and corresponding types of possible orbits.

I would like to thank Zahra Gh. Moghaddam, for her

interest in this work.

Appendix A

Derivation of the period for stable orbits

In Eq. (13) we substitute:

Emin=C(rm)+

√

g(rm)

(

m2+
`2Ia
r2
m

)

. (A1)

The Eqs. (7) and (8), for the current case can yield:

dt

dτ
=

Emin

g(rm)
,

dφ

dτ
=

`2Ia
r2
m

.
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To calculate its period we need the rate of changing in
the coordinate time t with respect to φ as follows:

T =2π
dt

dφ
. (A2)

By chain differentiation we have:

dt

dφ
=

dt/dτ

dφ/dτ
=

Emin/g(rm)

`2Ia/r2
m

.

Therefore for the period of stable orbits in Class Ia, (from
Eq. (A1)) we have:

TIa=2π

r2
m

[

C(rm)+

√

g(rm)

(

m2+
`2Ia
r2
m

)

]

g(rm)`2Ia
. (A3)

Appendix B

Derivation of the precession of periastron in plane-

tary orbits

We will find this precession here in the following way [26]:

Substituting u=
1

r
in Eq. (11) yields:

(

du

dφ

)2

= −q2
0u4+2m0u

3
−u2

(

1+
q2
0m2

L2

)

+
2m0m

2

L2
u+

(E−qq0u)2−m2

L2
. (B1)

We consider an approximately stable orbit, with devia-
tions on the trajectory. This helps us compare the trajectories
with the known circular orbits and simplify the calculations
to derive the precession. By defining:

z=u−um,

in which z is the deviation from circularity. We substitute
this in Eq. (B1), ignoring the terms O(z3) because we are in-
terested in nearly circular orbits (z�1). Considering L=`Ia

and E=Emin for the stable orbits in Class Ia, yields:

(

dz

dφ

)2

=

[

−u2
m−u4

mq2
0+

E2
min

`2Ia
−

m2q2
0u2

m

`2Ia
−

2Eminqq0um

`2Ia

+
2m2m2

0um

`2Ia
+2m0u

3
m+

q2q2
0u2

m

`2Ia
−

m2

`2Ia

]

+z

[

2q2q2
0um

`2Ia
−4q2

0u3
m−

2m2q2
0um

`2Ia
−2um+6m0u

2
m

−
2Eminqq0

`2Ia
+

2m2m0

`2Ia

]

z2

[

−6q2
0u2

m+
q2q2

0

`2Ia

+6m0u
2
m−1−

m2q2
0

`2Ia

]

. (B2)

Here, we must have a periodic function, to return the
initial φ and u after a period. As usual we choose z =
c1+c2cos(αφ+c3) in which c1, c2 and c3 are constants. How-
ever, the coefficient α is not equal to one, and in Eq. (B2) it
would be the square root of the coefficient of z2 (see Ref. [26]).
Therefore:

α=

[

−6q2
0u2

m+
q2q2

0

`2Ia
+6m0u

2
m−1−

m2q2
0

`2Ia

]
1
2

. (B3)

For αφ = 2π, we have a complete orbit, therefore the
change in φ from one periastron to the next is:

∆φ=
2π

α
=2π

[

−6q2
0u2

m+
q2q2

0

`2Ia
+6m0u

2
m−1−

m2q2
0

`2Ia

]
1
2

. (B4)
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