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Analytical determination of optimal luminosity for τ mass scan *
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Abstract: Resorting to Hessian matrix, the analytical formula is obtained to determine the optimal luminosity

proportion for the experiment of τ mass scan. Comparison of numerical results indicate the consistency between the

present analytical evaluation and the previous computation based on the sampling technique.
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1 Introduction

The mass of τ lepton (mτ) is one of the elementary pa-
rameters in the Standard Model (SM), and its accuracy is
of great importance for testing and improving SM. How-
ever, the accuracy of mτ is merely at the level of 10−4 for
the time being, which is about four orders of magnitude
lower than that of the electron and muon. Therefore, the
precise measurement of mτ is an important work for τ

physics. Two methods are usually employed to measure
mτ: the pseudomass technique [1, 2] and the threshold
scan method. The former depends on the reconstruction
of the invariant mass and energy of the hadronic τ decay
final states, while the latter depends on the good under-
standing of the production cross section near threshold.

The most accurate measurement of mτ was first ob-
tained by BES Collaboration [3–5] two decades ago by
adopting the threshold scan method. With the upgraded
detector BES0 [6], large τ data are expected and a more
precise measurement of mτ could be achieved with the
development of experimental techniques [7] and theoret-
ical calculations [8–11].

For the given data, the taking time (equivalently the
limited total luminosity), the data taking points and
the luminosity for each point should be optimized be-
fore the data taking process. Conventionally, the Monte
Carlo simulation and sampling technique are used to
simulate various data taking cases and luminosity dis-
tribution [12, 13]. This method can acquire a compar-
atively optimal scheme, but at the same time it con-
sumes a large amount of computing time. In this paper,
an analytical formula is obtained to determine the opti-

mal proportion of luminosity for a certain energy point
distribution.

2 Methodology

Suppose in the scan experiment, a total of Npt points
need to be taken in the vicinity of mτ threshold. To
analyze the scan data, the following χ2 function is con-
structed:

χ2=

Npt
∑

k=1

(

Nk−µk

∆Nk

)2

, (1)

where Nk is the number of events determined by exper-
iment at the k-th energy point, µk is the expectation
number of events determined by theory, ∆Nk is the ex-
perimental error. In the following analysis, only statisti-
cal error is concerned, which means ∆Nk=

√
Nk.

In the scan experiment of mτ, suppose only eµ final
state is concerned. The expectation of event number µk

is given by

µk=[ε·Beµ·σobs(mτ,E
k
cm)+σBG]·Lk, (2)

where ε is the event selection efficiency for eµ final state,
Beµ is the branching ratio of the final state, σobs is the
observed cross section for τ pair production at k-th en-
ergy point with energy Ek

cm, which could be calculated
by Voloshin’s fomulas [8], σBG is the total cross section
of background channels, and Lk is the luminosity at k-th
energy point.

In Eq. (2), some parameters (mτ, ε, σBG) need to
be determined using experimental data. This could be
achieved by minimizing the χ2 function in Eq. (1). For
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the fitting results of all relevant parameters, what we
mostly care about is the uncertainty of mτ. To obtain
the smallest uncertainty of mτ, many studies have been
performed [12–14], and the main conclusions are summa-
rized as follows:

1) One energy point is sufficient for one parameter
optimization.

2) The optimal position of the energy point can be
determined by the sampling technique [12, 13] or the an-
alytical method [14].

3) The optimal proportion of luminosity can be de-
termined by the sampling technique [13].

In this paper, the first two conclusions are taken for
granted, which means if there are n parameters, the en-
ergy points to be taken are also n, that is Npt=n. Then
we will obtain an analytical formula to determine the
optimal proportion of luminosity.

3 Luminosity distribution

In this section the summation of index is always from
1 to n. Suppose the total luminosity is L0, Lk=xk·L0 is
the luminosity at k-th energy point, and xk denotes the
corresponding fraction of luminosity. Now define

σ∗

k = Nk/Lk, (3)

σk = µk/Lk=ε·Beµ·σobs(mτ,E
k
cm)+σBG, (4)

as the effective cross sections for experiment and theory,
then the χ2 in Eq. (1) is recast as

χ2=L0

n
∑

k=1

xk·
(σ∗

k−σk)2

σ∗

k

. (5)

The minimization of χ2 leads to the optimal values of
relevant variables. Now we consider the Hessian matrix
at the minimization point of χ2. The element of the
Hessian matrix is

Hij =
∂2

χ2

∂θi∂θj

(6)

= 2L0

n
∑

k=1

xk

σk

[

(

∂σk

∂θi

)(

∂σk

∂θj

)

−(σ∗

k−σk)

(

∂2
σk

∂θi∂θj

)

]

. (7)

The second set of terms in the above equation can be
ignored since it is simply the normalized residual [15].
Statistically, the normalized residuals should be small,
and scattered randomly around zero in the vicinity of
the minimization point of χ2; hence, on being summed,
these terms yield a negligible contribution to the Hessian.

By throwing away the second order terms, the Hessian
can be expressed compactly in matrix denotation, that
is

H=2L0AXAT, (8)

with

aik=
∂σk

∂θi

, aT
kj =ajk , xij =

xi

σj

δij . (9)

The superscript T indicates the matrix transposition,
and the δij indicates that the matrix X is actually diago-
nal. The inverse of the Hessian matrix is connected with
the error matrix. If suppressing the irrelevant constant,
we focus on

U =(AXAT)−1=(A−1)TX−1A−1. (10)

If we are solely interested in the error of a special vari-
able, say the first variable x1, the square of the equivalent
error1) of variable x1 is

u11=
∑

k

α2
k1σk

xk

, (11)

where αk1 is the element of matrix A−1, and u11 obvi-
ously depends on the fraction of luminosity xi. Noticing
the constraint

∑

i
xi=1, in order to acquire the optimal

values of xi, we adopt the Lagrange method of multi-
pliers, introduce a new parameter λ, and construct the
Lagrange function as follows

L(xk,λ)=u11+λ

(

∑

i

xi

)

. (12)

The minimization requirement of ∂L/∂xk = 0 immedi-
ately leads to x2

k=α2
k1σk/λ, which readily yields the fol-

lowing relation

x1 :x2 :···:xn=(α11

√
σ1):(α21

√
σ2):···:(αn1

√
σn) . (13)

Applying our conclusion to the τ mass scan, three in-
dexes 1, 2, 3 correspond to the variables mτ, ε, σBG, re-
spectively; three energy points are [13] E1=3.5538 GeV,
E2=3.595 GeV, and E3=3.50 GeV. The optimal frac-
tions of luminosity at these points are x1=70.0%,
x2=21.8%, and x3=8.2%. Comparing with the results
by the sampling technique [13] x1=67.5%, x2=22.5% and
x3=10.0%, two sets of results are consistent with each
other fairly well.

In the above calculation, some relevant values are
adopted from Ref. [13]: mτ=1.77699 GeV, Beµ=0.06194,
ε=14.2% and σBG=0.024 pb.

1) Since U is different from the error matrix only by a constant, the element of U is also different from the error of variable merely by
a constant, and we call the element of U the equivalent error.
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4 Discussion

The above method is developed by using the least
square method. For the maximum likelihood fit, the like-
lihood function is constructed as

LF=
n
∏

k=1

µNk

k e−µk

Nk!
. (14)

Finding the maximum of the likelihood function equals
to finding the minimum of the function f defined as

f =−lnLF=−
n
∑

k=1

ln

(

µNk

k e−µk

Nk!

)

. (15)

Define

fk=
µNk

k e−µk

Nk!
,

the second order derivative of function f is

∂2
f

∂θi∂θj

=

n
∑

k=1

[(

1

fk

∂fk

∂θi

)(

1

fk

∂fk

∂θj

)

− 1

fk

∂2
fk

∂θi∂θj

]

. (16)

According to the linearization assumption in the Gauss-
Newton method [16], the second item in Eq. (16) can be
ignored. Since

1

fk

∂fk

∂θi

=

(

Nk

µk

−1

)

∂µk

∂θi

=

√

xkL0

σk

∂σk

∂θi

, (17)

then Eq. (16) becomes

∂2
f

∂θi∂θj

=L0

n
∑

k=1

xk

σk

(

∂σk

∂θi

)(

∂σk

∂θj

)

. (18)

The Hessian matrix can be expressed as H =L0AXAT,
which is exactly the one we obtained in Eq. (8) except
for a constant factor 2. Therefore, the maximum like-
lihood function is equivalent to the χ2 function defined
in Eq. (1) and all deductions presented in the previous
sections are applicable for likelihood maximization.

5 Summary

For multi-parameter optimization fitting, if we aim
at the minimization of one parameter error, that is τ

mass, for τ scan measurement, the optimal proportion of
luminosity can be determined by an analytical formula,
which is obtained by virtue of the Hessian matrix. The
numerical results from the analytical evaluation agree
fairly well with those in the previous paper, which are
obtained based on the sampling technique.

Such an analytical result is applicable for both chi-
square minimization and likelihood maximization meth-
ods. Moreover, the method developed in this paper is
more robust, efficient, and time-saving compared with
the simulation and sampling technique used before.
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