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Solution of the effects of twinning in femtosecond X-ray

protein nanocrystallography *
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Abstract: With the development of the XFEL (X-ray free electron laser), high quality diffraction patterns from

nanocrystals have been achieved. The nanocrystals with different sizes and random orientations are injected to the

XFEL beams and the diffraction patterns can be obtained by the so-called “diffraction-and-destruction” mode. The

recovery of orientations is one of the most critical steps in reconstructing the 3D structure of nanocrystals. There is

already an approach to solve the orientation problem by using the automated indexing software in crystallography.

However, this method cannot distinguish the twin orientations in the cases of the symmetries of Bravais lattices higher

than the point groups. Here we propose a new method to solve this problem. The shape transforms of nanocrystals

can be determined from all of the intensities around the diffraction spots, and then Fourier transformation of a single

crystal cell is obtained. The actual orientations of the patterns can be solved by comparing the values of the Fourier

transformations of the crystal cell on the intersections of all patterns. This so-called “multiple-common-line” method

can distinguish the twin orientations in the XFEL diffraction patterns successfully.
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1 Introduction

It is highly promising to determine the structure of
nanocrystals using the coherent X-ray diffractive imaging
(CXDI) technique with the development of the XFEL.
The XFEL provides ultra-short and extremely intense
coherent X-ray pulses with a peak brilliance 10–11 or-
ders of magnitude higher than the synchrotron sources
[1]. It has been proposed that the diffraction patterns
may be obtained from the nanocrystals by using these
XFEL pulses under an entirely new radiation damage
mechanism [2, 3]. Recently, the first femtosecond X-ray
protein nanocrystallography diffraction experiment has
been carried out at the Linac Coherent Light Source. It
has proved that high-quality nanocrystal diffraction data
can be obtained by using the XFEL [4].

Due to the finite size of nanocrystals, there are many
mid-Bragg peaks in the diffraction patterns of nanocrys-
tals. The mid-Bragg peaks can solve the phase prob-
lem by using the oversampling technique [5, 6], which
requires that the regular three-dimensional oversampled
structure factors are obtained from tens of thousands of
snapshot patterns. There is already a method to solve

this problem by determining the mean shape transform
[7], but this method requires the absolute orientations
of each snapshot pattern. Presently, the orientations of
diffraction patterns of nanocrystals are determined by
the automated indexing software [4, 8]. The automated
indexing algorithm only uses the positions of the Bragg
peaks but not their intensities [9], if the symmetries of
the Bragg lattices are higher than the point groups, such
as the case of space group P63 used in the first fem-
tosecond X-ray protein nanocrystallography diffraction
experiments, the twin-related orientations cannot be dis-
tinguished [4, 10].

Here we describe a new approach to solve the prob-
lem. This method not only uses the positions of Bragg
peaks but also uses the intensities of all Bragg peaks and
mid-Bragg peaks. Our approach mainly consists of the
following steps. The first one is to obtain a collection
of possible orientations related by the symmetry of the
lattice using the automated indexing software to each
pattern; these orientations are classified as a set which
consists of the actual orientation and twin-related orien-
tation of the pattern. The second one is to calculate the
shape transform (size) of nanocrystal and the Fourier
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transforms of the crystal cell (structure factor) in every
orientation in the set. The third one is to determine the
actual orientations of each pattern and remove the twin-
ning ambiguity by comparing the values of the Fourier
transformations of the crystal cell on the intersections of
all patterns.

2 Determination of the shape transform

and actual orientation of snapshot

diffraction pattern

For a parallelepiped nanocrystal with random size
and orientation, illuminated by a XFEL pulse with wave-
length λ, its snapshot diffraction patterns can be ex-
pressed as:

I(n1,n2)=I(k)=J0r
2
e |F (k)|2 |G(k)|2Ωpix(k), (1)

where I(n1,n2) stands for the diffracted photon flux in
detector pixel (n1,n2); k stands for the scattering vector
corresponding to the detector pixel, mainly determined
by the wavelength, pixel position, the sample-to-detector
distance, and orientation of the nanocrystal; re is the
classical electron radius; J0 is the flux density of incom-
ing X-ray pulse, and Ωpix(k) is the solid angle of the
detector pixel; F (k) is the structure factor; and G(k) is
the shape transform of nanocrystal.

According to Eq. (1), we can find that the diffracted
photon flux is mainly determined by the structure factor
F (k) and the shape transform G(k). The square of the
modulus of F (k) changes gently between the neighboring
Bragg peaks, but the square of modulus of G(k) changes
rapidly between the neighboring Bragg peaks, as shown
in Fig. 1. Therefore, we can conclude that the diffrac-
tion intensity difference between the neighboring pixels
in the snapshot diffraction pattern is mainly caused by
the shape transform, the number of unit cells nx×ny×nz

can be determined by calculating the average difference
between each neighboring pixel.

Fig. 1. The square of the modulus of F (k) and
G(k) plotted against the scattering vector k be-
tween the neighboring Bragg peaks, where the
squares of modulus of F (k) and G(k) are nor-
malized, respectively, the Miller indices of neigh-
boring Bragg peaks are (000) and (001).

To the nth pattern, it is reasonable to assume that
we have obtained a collection of orientations related by
the symmetry of the lattice using the automated index-
ing software. These orientations are classified as set n.
Then the square of modulus of shape transforms G(k′)
of the nth pattern in pixel (n1,n2) corresponding to the
orientation (α, β, γ), which is one of the orientations in
the set n, can be expressed as:

G(n1,n2) = |G(k′)|
2
=

sin20.5×nx×k
′·a

sin20.5×k′·a

×
sin20.5×ny×k

′·b

sin20.5×k′·b

sin20.5×nz×k
′·c

sin20.5×k′·c
, (2)

where (nx, ny, nz) is the number of unit cells, a, b and c

are the real-space unit cell vectors, k
′ stands for the scat-

tering vector in the detector pixel corresponding to the
orientation (α, β, γ). The average difference diff between
the diffracted photon flux and the square of modulus of
shape transforms can be expressed as:

diff=

∑

n1,n2

(

(

I(n1+1,n2)

I(n1,n2)
−

G(n1+1,n2)

G(n1,n2)

)

+
1
∑

a=−1

(

I(n1+a,n2+1)

I(n1,n2)
−

G(n1+a,n2+1)

G(n1,n2)

)

)

∑

n1,n2

(

1+
1
∑

a=−1

1

) . (3)

An exhaustive search of (nx, ny, nz) is performed
for all nanocrystal sizes. Theoretically, the average dif-
ference diff should be minimal in the actual nanocrystal
size and the actual orientation. Therefore, if there is a
global minimum of diff in one nanocrystal size (nx, ny,
nz), this size will be considered as the correct size cor-
responding to the orientation (α, β, γ), then the shape
transform in this orientation is obtained. Due to the
errors in the orientations determined by the automated

indexing software [10], only the low resolution data in
the snapshot diffraction patterns are used to determine
the shape transforms. The reason is that the |G(k)|2

is sensitive to the orientation errors, especially at high
resolution. In addition, the diffraction intensities are in-
tegrated by binning pixels; the binning can reduce the
effects of saturated pixels and the noises. However, here
we must note that the binning pixels can’t change the
number of mid-Bragg peaks; in this paper binning 11×11
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pixels into 1 pixel. To further reduce the error, only the
pixels whose photon counts are higher than 10 are used
to calculate the average difference.

After obtaining the shape transforms in every orien-
tation in the set n, the corresponding structure factor
|F (k)| in these orientations can be easily obtained ac-
cording to Eq. (1). For convenience, we select the 1st

pattern as the reference pattern, |F (α1,β1,γ1,1)| is used
to represent the reference structure factor, (α1,β1,γ1) is
the actual orientation of the 1st pattern; |F (α,β,γ,n)|
is used to represent the structure factor of nth pattern
in the orientation (α, β, γ), where (α, β, γ) represents
one of the possible orientations in the set n. Both the
|F (α1,β1,γ1,1)| and |F (α,β,γ,n)| are interpolated onto
regular girds in reciprocal space using the nearest neigh-
bor interpolation. There will be an intersection line
between the |F (α1,β1,γ1,1)| and |F (α,β,γ,n)|, theoreti-
cally the value of |F (α1,β1,γ1,1)| and |F (α,β,γ,n)| on the
intersection line will be equal if the actual orientation of
nth patter is (α, β, γ), since the structure factors belong
to the same crystal cell even calculating from nanocrys-
tals with different sizes.

First we use the intersection between two patterns
(common line), where the structure factors of the crystal
cell should be equal, to determine the actual orientations
of these snapshot diffraction patterns [11, 12]. The actual
orientation of the nth pattern can be solved by scanning
the orientation (α, β, γ) in the set n and calculating the
average difference among regular grids near the inter-
section line between |F (α1,β1,γ1,1)| and |F (α,β,γ,n)|.
Rfactor(α, β, γ, n) is used to represent the average dif-
ference, it can be expressed as:

Rfactor(α,β,γ,n)

=

∑

hkl

||Fhkl(α,β,γ,n)|−|Fhkl(α1,β1,γ1,1)||

|Fhkl(α1,β1,γ1,1)|
∑

hkl

1
, (4)

where the integer set hkl is the indices of regular girds
near the intersection line. If there is a minimum of
Rfactor(α, β, γ, n) in one of the orientations in the set
n, then this orientation is considered as the determined
actual orientation of the nth pattern. The errors of deter-
mining orientation by a single common line is big, since
the number of regular grids near the common line which
are used to calculate Rfactor(α, β, γ, n) is small.

Therefore we apply the so-called “multiple-common-
lines” method to re-determine the actual orientation of
the snapshot diffraction pattern more accurately. The
concept is that two arbitrary patterns in reciprocal space
intersect on a line, not only the original reference pattern
(the 1st pattern) and the nth pattern. Thus not only the
original reference pattern but also all the other patterns

can be used to determine the orientation of nth pattern.
The orientations of each pattern can be re-determined
using the following steps.

(1) The nth pattern whose orientation is to be re-
determined is interpolated onto regular grids in recipro-
cal space in orientation (α, β, γ), which is one of the
orientations in the set n, |Fhkl(α,β,γ,n)| is used to rep-
resent the 3D data set.

(2) The new reference patterns, which consist of all
patterns except the nth pattern, are also interpolated
onto the regular grids in reciprocal space. Another 3D
data set 〈|Fhkl|〉 can be assembled from these patterns.
The initial orientations of the new reference patterns are
given by the single common-line method.

(3) Scanning the orientation (α, β, γ) in the set n and
calculating the average difference among regular grids
near the intersection lines between |Fhkl(α,β,γ,n)| and
〈|Fhkl|〉, multi-Rfactor (α, β, γ, n) is used to represent
the average difference, it can be expressed as:

multi-Rfactor(α,β,γ,n)

=

∑

hkl

||Fhkl(α,β,γ,n)|−〈|Fhkl|〉|

〈|Fhkl|〉
∑

hkl

1
. (5)

If there is a minimum of multi-Rfactor (α, β, γ, n) in
one of the orientations in the set n, then this orientation
is considered as the re-determined actual orientation of
the nth pattern.

(4) Repeat Step 1–3 for all the patterns except the
1st pattern.

(5) Repeat Step 1–4 until the orientations of all pat-
terns reach convergence. In this paper after 3 cycles the
orientations of each pattern no longer change.

The multiple-common-lines method can significantly
reduce the azimuth error relative to single common-line
method. The main reason is that if there are enough
patterns, the whole diffraction information of the pat-
tern will be used to determine its own orientation.

3 Simulations

The simulated patterns can be obtained according to
Eq. (1). The parameters are basically similar to the first
femtosecond X-ray protein nanocrystallography diffrac-
tion experiment carried out at the LCLS [4]. We down-
load the membrane protein (1JB0) whose space group is
P63 and cell constants of a=b=28.1 nm, c=16.5nm from
the Protein Data Bank, the orientations and the num-
ber of unit cells (nx, ny, nz) are randomly generated
with a uniform distribution. The length of nanocrys-
tal ranges from 300 nm to 500 nm. Then we simulate
an XFEL pulse with λ=6.9 Å and 1×1012 photons per
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pulse focused to 3 µm. The detector contains 1024×1024
75 µm pixels, for a low resolution pattern the sample-to-
detector distance is 564 mm, for a high resolution pattern
the sample-to-detector distance is 68 mm. We simulate
a series of high resolution patterns and low resolution
patterns containing Poisson noise with these parameters
respectively and randomly choose 40 patterns.

Assuming we have obtained a collection of possible
orientations related by the symmetry of the lattice us-
ing the automated indexing software with an RMS error
of 0.06 degrees to each pattern [8]. For the P63 space
group, only one twin possibility arises, an ambiguity ex-
isting in that each pattern could correspond to one of

two possible orientations. The two possible orientations
are related by the rotation of 180 degrees about the h=k

axis. This operation brings the lattice into coincidence
with itself, but not the associated structure factors. It
converts index hkl into kh-l [8]. Then we employ our
method to solve the problem. First, we determine the
shape transforms of each low resolution patterns in the
two possible orientations. The result is shown in Fig. 2,
Fig. 3 and Table 1. As shown in Fig. 2, there is indeed a
minimum of diff in the size (11, 12, 19), which is actual
nanocrystals size, in the actual orientation. As shown in
Fig. 3, there is a minimum of diff in another size (12, 11,
19) in the twin-related orientation, this is caused by the

Fig. 2. The diff for pattern 5 in the actual orientation, whose actual nanocrystal size is (11, 12, 19). (a) The diff
along the ny-nz plane, where nx=11. (b) The diff along the nx-nz plane, where ny=12. (c) The diff along the
nx-ny plane, where nz=19.

Fig. 3. The diff for pattern 5 in the twin-related orientation. (a) The diff along the ny-nz plane, where nx=12. (b)
The diff along the nx-nz plane, where ny=11. (c) The diff along the nx-ny plane, where nz=19.
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Table 1. The result for determining the shape transforms in the two possible orientations.

pattern actual size recovered in actual orientation recovered in twin-related orientation

pattern 1 (11,11,30) (11,11,30) (11,11,30)

pattern 2 (14,14,22) (14,14,22) (14,14,22)

pattern 3 (17,15,29) (17,15,29) (15,17,29)

pattern 4 (14,15,29) (14,15,29) (15,14,29)

pattern 5 (11,12,19) (11,12,19) (12,11,19)

pattern 6 (18,15,27) (18,15,27) (15,18,27)

pattern 7 (15,13,29) (15,13,29) (13,15,29)

pattern 8 (13,12,21) (13,12,21) (12,13,21)

pattern 9 (14,17,18) (14,17,18) (17,14,18)

pattern 10 (16,16,28) (16,16,28) (16,16,28)

pattern 11 (18,11,24) (18,11,24) (11,18,24)

pattern 12 (14,16,24) (14,16,24) (16,14,24)

pattern 13 (18,12,21) (18,12,21) (12,18,21)

pattern 14 (13,11,22) (13,11,22) (11,13,22)

pattern 15 (18,16,27) (18,16,27) (16,18,27)

pattern 16 (18,15,19) (18,15,19) (15,18,19)

pattern 17 (15,14,25) (15,14,25) (14,15,25)

pattern 18 (16,11,20) (16,11,20) (11,16,20)

pattern 19 (17,11,19) (17,11,19) (11,17,19)

pattern 20 (18,13,29) (18,13,29) (13,18,29)

pattern 21 (11,11,23) (11,11,23) (11,11,23)

pattern 22 (15,12,24) (15,12,24) (12,15,24)

pattern 23 (12,18,24) (12,18,24) (18,12,24)

pattern 24 (18,12,28) (18,12,28) (12,18,28)

pattern 25 (16,15,21) (16,15,21) (15,16,21)

pattern 26 (17,18,29) (17,18,29) (18,17,29)

pattern 27 (11,11,26) (11,11,26) (11,11,26)

pattern 28 (15,16,23) (15,16,23) (16,15,23)

pattern 29 (14,12,22) (14,12,22) (12,14,22)

pattern 30 (13,12,25) (13,12,25) (12,13,25)

pattern 31 (16,17,20) (16,17,20) (17,16,20)

pattern 32 (15,13,24) (15,13,24) (13,15,24)

pattern 33 (18,13,24) (17,13,24) (13,17,24)

pattern 34 (11,18,29) (11,18,27) (18,11,27)

pattern 35 (17,11,27) (17,11,27) (11,17,27)

pattern 36 (16,18,25) (16,18,25) (18,16,25)

pattern 37 (13,16,22) (13,16,22) (16,13,22)

pattern 38 (17,13,26) (17,13,26) (13,17,26)

pattern 39 (14,17,21) (14,17,21) (17,14,21)

pattern 40 (17,15,19) (17,15,19) (15,17,19)
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rotation of 180 degrees about the h=k axis. As shown
in Table 1, the actual shape transforms of most snapshot
diffraction patterns can be determined in the actual ori-
entations, except the diffraction pattern 33 and 34, but
this error is not large.

After getting the shape transforms in the two possi-
ble orientations, we then employ the so-called “multiple-
common-lines” method to determine the actual orienta-
tion of each pattern. The result for determining the ac-
tual orientation is shown in Fig. 4 and Fig. 5. As shown
in Fig. 4, the actual orientations of most patterns can be
determined by a single common line. As shown in Fig. 5,
the actual orientations of all patterns can be determined
using multiple-common-lines methods.

Fig. 4. The F (α1,β1,γ1,1) is chosen as refer-
ence structure factor, the solid line represents
Rfactor(αactual,βactual,γactual,n) in actual orienta-
tions of each pattern, and the dotted line repre-
sents Rfactor(αtwin,βtwin,γtwin,n) in twin-related
orientations of each pattern, where (α1,β1,γ1)
represents the actual orientation of the 1st

pattern. Except the n=3, 10, 14, 15, 29,
all Rfactor(αactual,βactual,γactual,n) are less than
Rfactor(αtwin,βtwin,γtwin,n), which means that
the actual orientations of most patterns have been
determined.

Fig. 5. The solid line represents multi-Rfactor
(αactual,βactual,γactual,n), and the dotted line rep-
resents multi-Rfactor (αtwin,βtwin,γtwin,n). All
multi-Rfactor (αactual,βactual,γactual,n) are less
than multi-Rfactor (αtwin,-βtwin,γtwin,n), which
means that the actual orientations of all patterns
have been determined.

4 Conclusions

In this paper, we neglect beam divergence and spec-
tral width, because, for small nanocrystals and beam di-
vergence, the crystal-size effects dominate the diffracted
intensity rather than beam divergence and the spectral
width [10]. In addition, we assume that the nanocrys-
tals are perfect crystals. In summary, we propose a new
method which may solve the shape transforms and ac-
tual orientations of snapshot diffraction patterns taken
from nanocrystals varying in size and orientation. After
that the regular three-dimensional structure factor which
satisfies oversampling can be easily obtained, then the
phasing problem can be solved using iterative phasing
techniques and the 3D structure of the nanocrystal can
be reconstructed.
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