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Abstract: The China Spallation Neutron Source (CSNS) accelerators consist of a low energy H− linac and a high

energy proton Rapid Cycling Synchrotron (RCS). The proton beam is accumulated in the RCS and accelerated

from 80 MeV to 1.6 GeV with a repetition of 25 Hz. Independent component analysis (ICA) is a robust method

for processing the collected data (samples) recorded by the turn-by-turn beam position monitor (BPM), which was

recently applied to the accelerator. The samples are decomposed to source signals, or the so-called independent

components, which correspond to the inherent motion of samples, such as betatron motion and synchrotron motion.

A study on the application of the ICA method to CSNS/RCS has been made. It shows that the beta function, phase

advance, and dispersion can be well reconstructed by using ICA in CSNS/RCS. The effects of BPM errors on the ICA

results are also studied. By comparing the different solving methods in ICA, the so-called SOBI has more advantages

for isolating the independent components on the application of ICA to CSNS/RCS. Beam emittance dilution in the

process of exciting the turn-by-turn samples is considered, and thus an RF kicker is adopted to avoid such emittance

growth.
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1 Introduction

The CSNS accelerators consist of an H− Linac and
a Rapid Cycling Synchrotron (RCS). The H− beam is
accelerated to 80 MeV in the linac and then stripped to
a proton beam during the injection procedure into the
RCS. The proton beam is accumulated and accelerated
to 1.6 GeV in the RCS, and then extracted for striking
the neutron target [1]. Table 1 shows the main parame-
ters of the RCS.

In recent years, independent component analysis has
become a very popular method for blind source sepa-
ration (BSS) in the fields of signal processing, medical
imaging, telecommunications, etc. By isolating the un-
derlying sources from lots of samples, ICA can obtain
a great deal of useful information, and the system be-
havior can be better understood. The ICA method was
first introduced to beam measurement in accelerators by
S.Y. Lee’s team [2], for treating the samples recorded by
turn-by-turn BPMs. In the application of ICA to accel-
erators, there are two main categories. In the first one,
it is assumed that the sources are non-Gaussian, and the
independent component has maximum non-Gaussianity.
The FastICA [3], which is based on a fixed-point iteration
scheme for searching the non-Gaussianity of the source

signals, is a widely used code in this category. In the
second category, it is based on the assumption that the
independent components have narow-band power spec-
tra, and consequently the time-lag covariance matrices
are diagonal. The SOBI algorithm [4] is more popular in
this category due to the use of multiple time-lag covari-
ance matrices.

Table 1. Main parameters of the RCS.

parameter value

circumference/m 227.92

repetition rate/Hz 25

average current/µA 62.5

Inj. energy/MeV 80

Ext. energy/GeV 1.6

beam power/kW 100

nominal tunes (H/V) 4.86/4.78

number of BPM (H/V) 32(H)/32(V)

acceptance/(πmm·mrad) 540

To excite the beam for obtaining turn-by-turn BPM
data, an RF kick or a pinger can be chosen. However,
the beam emittance can be diluted by a pinger, so an RF
kicker is chosen.
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2 Oscillation driven by an RF kicker

An RF kicker can excite the transverse coherent beam
oscillation with a sinusoidal oscillating dipole field when
its frequency is close to the betatron frequency. If the
amplitude of the RF kicker field is adiabatically ramped
up and down, it can produce large coherent beam oscil-
lations. To control and preserve the particle beam emit-
tance, a high frequency RF kicker can be slowly energized
to its maximum field and likewise slowly de-energized,
and the betatron oscillation can be controlled adiabati-
cally [5]. For this feature, an RF kicker has been used in
the AGS, RHIC, SPS, LHC, and Tevatron [6].

We define νm=ωm/ω0 as the modulation tune, where
ω0 is the orbital angular frequency, and ωm is the RF
kicker’s angular frequency. When n+νm ≈ ν, the beam
will be driven coherently, and the amplitude of betatron
motion grows linearly with time, as shown in Eq. (1) [7]

y(s)≈−

[

β(s)β3/2
0 θaν

4πR

s

R

]

cos
νs

R
+··· , (1)

where θa is the RF kicker angle, β(s) and β0 are the
beta functions in the positions of BPM and RF kicker,
respectively. R is the average radius, s is the longitudi-
nal position and ν is the tune of the transverse motion.
Fig. 1 shows the driven oscillation excited by the RF
kicker. The RF kicker is switched off when the beam
oscillation reaches proper amplitude, and the data of the
free oscillations are stored for ICA processing. The first
200 turns are the rise time, and the latter 800 turns are
free oscillation after excitation. The amplitude of the RF
kicker is 0.2 mrad. The RF kicker works at a repetition
rate of 449 kHz, which means νm=0.14, corresponding to
the beam angular frequency of 3.212 MHz in the beam
energy of 80 MeV.

Fig. 1. Driven betatron oscillation with an RF
kicker and free betatron oscillation without an RF
kicker.

3 Reconstruction of Twiss parameters
by ICA

The samples obtained from turn-by-turn BPMs can
be recorded in the vector x(t) = [x1(t),··· ,xm(t)]T, and
assumed to be generated by

x(t)=As(t), (2)

where A∈<m×n is the mixing matrix with m>n (n is
the row index of the estimated matrix) .

In the first category, a linear transformation of Eq. (2)
is made and the estimated sources become

y=w
′
x=w

′
As=z

′
s. (3)

Because the term z′s is more Gaussian than any of the
si and becomes least Gaussian when it in fact equals one
of the si, and then the estimated independent sources
can be identified one by one through searching for the
least non-Gaussian point. Finally the whole independent
components can be written as

s=A
−1

x. (4)

In the second category of the ICA processing, the source
signals are assumed to be mutually independent and tem-
porally correlated. Consequently, the covariance matrix
Cs ≡

〈

s(t)s(t)
′
〉

is diagonal. The samples are the linear
combination of the independent components; so the co-
variance matrix of the samples CX ≡

〈

X(t)X(t)
′
〉

is not
diagonal. In order to get the relationship between the
independent components and the samples, the singular
value decomposition (SVD) method can be used to ex-
tract the independent components from samples because
the covariance matrix of the samples can be decomposed
into the product of the unitary matrix and the diago-
nal matrix, and the diagonal matrix is just the covari-
ance matrix of the independent components. Because
the unitary matrix is not always unique in the SVD pro-
cess, a proper unitary matrix needs to be figured out to
be multiplied to the former unitary matrix to make the
covariance matrix of the extracted independent compo-
nents more diagonal. A time-lagged factor τ is always
used in the process of estimating the mixing matrix and
the independent components matrix, and the sample’s
covariance matrix can be decomposed, as

CX(τ )=ACs(τ )A′, (5)

where CX(τ)≡
〈

X(t)X(t+τ)
′
〉

and Cs(τ)≡
〈

s(t)s(t+τ)
′
〉

are the time-lagged covariance matrix of the samples and
the independent components, respectively. Finally, the
independent components s and the mixing matrix A can
be well estimated as Eq. (6) and Eq. (7) [2],

s = W
′
V X, (6)

A = V
−1

W , (7)
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Fig. 2. The temporal function of FastICA decomposition and their spectra in the frequency domain.

where W is the unitary matrix related with time-lagged
factor τ , and V ≡ Λ

−1/2
1 U ′

1. Λ1 and U1 are the diag-
onal matrix and unitary matrix in the SVD process of
the covariance matrix of samples without a time-lagged
factor.

There are 32 horizontal BPMs and 32 vertical BPMs
in the RCS. To get coherent betatron oscillation and syn-
chrotron oscillation, the initial amplitudes of beam oscil-
lation are set to 0.015 m in both horizontal and vertical
directions, and the RF cavity is included in the simula-
tion. The turn-by-turn BPM tracking data are obtained
by using the Accelerator Toolbox (AT) [8]. BPMs are
assumed to work perfectly and there is no noise in the
samples. The independent components are obtained by
using the FastICA code. The results of FastICA decom-
position are shown in Fig. 2. S1 and S2 are related to the
horizontal betatron oscillation; S4 and S5 are related to
the vertical betatron oscillation. S3 is the synchrotron
motion caused by energy variation about 1×10−5. As an
arbitrary similar permutation matrix can be multiplied
to mixing matrix A and estimated sources matrix S, the
samples matrix X does not change. Therefore, the or-
der of estimated sources cannot be directly determined
by FastICA, and with the help of the mode frequency,
the modes can be distinguished.

3.1 Betatron function and phase advance calcu-

lated from the spatial function

In the FastICA process, betatron functions and phase
advance can be derived from Eq. (4)

β=a(A2
s1+A2

s2), ϕ=tan−1(As1/As2). (8)

Fig. 3. Beta function comparison between FastICA
and theoretical value. (a) The horizontal beta
function comparison. (b) The vertical beta func-
tion comparison.
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The numbers and positions of the BPM in the RCS
are not important for the FastICA algorithm. Gener-
ally, BPMs are often located near the quadruples, and
they can reflect the beta beating. The constant a equals
2J(J is the action of the Hamiltonian system) in a linear
conservative system, and can be scaled from the model

M
∑

i=1

1

βi,ICA

=

M
∑

i=1

1

βi,MAD

, (9)

where M is the number of the BPM. Fig. 3 shows
the beta function calculated by FastICA and that from
MAD. It shows that the results agree well with the the-
oretical model.

Actually, the phase advance can be calculated accu-
rately from Eq. (8) between two adjacent BPMs. How-
ever, the initial phase in the first BPM also needs to be
calibrated with the theoretical model. Fig. 4 shows the
phase advance comparison between FastICA and the the-
oretical values. The results agree well with each other.

Fig. 4. Phase advance comparison between Fas-
tICA and theoretical value. (a) The horizontal
phase advance comparison. (b) The vertical phase
advance comparison.

3.2 Synchrotron motion

Component S3 in Fig. 2 represents the synchrotron
motion, and is related to the horizontal dispersion func-

tion and momentum deviation. The relationship between
the dispersion function and the momentum deviation can
be written as

∆p/p(s,t)=
1

D(s)
As(s)ss(t), (10)

where ss(t) represents the synchrotron component and
As the corresponding mixing vector. From Eq. (10), one
can easily get

∆p/p(s,t) =
1

b
ss(t), (11)

D(s) = bAs(s). (12)

The constant b can be scaled by the theoretical model.
Figure 5 shows the dispersion function obtained with

ICA and the comparison with the theoretical model. The
ICA results agree well with the theoretical model.

Fig. 5. Dispersion function comparison between
FastICA and the theoretical value.

4 The effects of errors on the ICA re-
sults

In case of decomposition of the perfect data without
error, it is good enough to find the independent compo-
nents accurately. However, for a real machine, the data
of BPMs always include errors, and these errors become
white noise in the ICA simulation. For CSNS/RCS, due
to the large aperture of the vacuum chamber, the errors
of BPM can be as large as 1 mm.

In the simulation with data including errors, both
the horizontal and vertical BPM turn-by-turn data are
recorded into matrices, with an error of 0.4 mm. The in-
troduced errors follow the uniform distribution, and the
RF cavity is turned off. The amplitudes of beam oscilla-
tion are set to 0.015 m in both the horizontal and vertical
directions. The errors of decomposed components due to
the error introduced in the BPM data are in Fig. 6, in
which the errors are defined as rms differences between
the theoretical model and the values obtained from ICA.
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Fig. 6. The ICA errors due to the noise of 0.4 mm. (a) The horizontal beta-beating between SOBI and the theoretical
values. (b) The vertical beta-beating between SOBI and theoretical values. (c) The normalized horizontal phase
advance differences between SOBI and theoretical values. (d) The normalized vertical phase advance differences
between SOBI and theoretical values.

In the noise level of around 0.4 mm, the ICA de-
composition can be done well by using FastICA. But
with the increase of the noise, the betatron function
cannot be isolated. The two main reasons may be
speculated as follows. One is that the non-Gaussianity
should be measured in a very accurately model. The
classical measurement of the non-Gaussianity is kurto-
sis or the fourth-order cumulant, and can be defined by
kurt(s) = E{s4}−3(E{y2})2. Because kurtosis is very
sensitive to the outliers, and its value may depend on
only a few observations in the tails of the distribution,
it is not a robustness measure of non-Gaussianity. Ne-
gentropy, which is based on the information quantity of
the (differential) entropy, is a second important measure
of non-Gaussianity. However, the estimation of negen-
tropy is always difficult, and some approximation has to
be used, and then the inaccuracy will be brought about.
The other reason is that the least non-Gaussian point
found by the FastICA algorithm is not always the global
maximum point. By using the Newton method, the max-
imum non-Gaussian point found in the gradient direction
is always the local maximum point.

To deal with data with large noise, another ICA code,
SOBI, is used. As stated from Eq. (5) to Eq. (7), the
independent sources are estimated by decomposing the
time-lag covariance of the samples. In the SOBI algo-
rithm, the samples recorded from turn-by-turn BPMs
are whitened to make the covariance of the samples form
an identity matrix and facilitate to next step. Because
the covariance of the independent sources is identical,
the SVD of the time-lag covariance of the whitened sam-
ples can improve the estimated independent sources ac-
curacy. By using SOBI, the betatron motions can be well

isolated even with large noise, especially in the case of
many independent sources mixed together. Fig. 7 shows
the betatron isolation errors by using FastICA and SOBI
respectively. When the BPM noise level reaches 900 µm,
the FastICA cannot extract the independent components
from samples, and a pink (blue) up-down line appears at
800 µm.

Fig. 7. The errors of beta function vs. BPM noise
levels isolated by using FastICA and SOBI.

To decompose the dispersion, the RF cavity is turned
on. The noise just added to the horizontal samples and
the noise level is around 1 mm. After the FastICA algo-
rithm process, five synchrotron signals emerged and no
synchrotron component matched the energy variation.
The sum of any two or three of the total five synchrotron
components also fails to match the energy variation. By
using SOBI, the synchrotron motion is unique, and the
corresponding mixed vector of that signal represents the
dispersion function. If an initial 80 keV energy kick is
put to the RF cavity, the FastICA can also isolate syn-
chrotron motion. Fig. 8 shows the dispersion function
isolated by using the FastICA and SOBI, with the noise
included.
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Fig. 8. The dispersion function decomposed by
FastICA and SOBI.

With large noise, the dispersion function can be de-
composed by both FastICA and SOBI. However, for Fas-
tICA, the beam needs to be strongly excited in syn-
chrotron motion, and this is difficult in the operation of
the RCS. The reason should be that the synchrotron mo-
tion is weak, though the noise level is high. Synchrotron
motion cannot be estimated by putting linear transfor-
mation to samples to get the least non-Gaussian point of
the synchrotron motion. By using SOBI, the dispersion
function can be decomposed without the strong excita-
tion of synchrotron motion.

5 ICA detection of a malfunctioning
BPM

To further illustrate the robustness of ICA, a narrow-
band bad-BPM harmonic oscillation has a ripple noise,
with the level of 1 mm and a frequency of 0.84, which is
very close to the betatron frequencies. In the simulation,
the other noises of BPMs are set to the level of 1 mm.
The RF cavity is supposed to match the magnetic field,
so there is no synchrotron independent component in the
ICA process. By using SOBI, the mode corresponding
to the ripple noise of the malfunction is sucessfully iso-
lated. As shown in Fig. 9, the mode S5 corresponds to
the ripple noise, while S1 and S2 represent the verti-
cal independent components, and S3 and S4 represent
the horizontal independent components. By using ICA,
the malfunction BPM is detected, even though the fre-
quency of the ripple noise is very close to the horizontal
tune of the beam. As the mode of the malfunction BPM
is separated, the other two transverse modes can be well
isolated, and thus the horizontal and vertical beta func-
tions and phase advance can be calculated accurately.

The RMS error of the beta function obtained from the
ICA and the theoretical model is 0.003 and 0.0025 for
the horizontal and vertical planes respectively, and the
horizontal and vertical phase advances are 0.00032 and
0.00035, respectively.

Fig. 9. The spectra of S1–S5 modes in the fre-
quency domain.

6 Summary and discussion

The study of the application of ICA on the
CSNS/RCS was done for decomposing the Twiss pa-
rameters. The two widely used categories of ICA are in
the field of blind source separation and were introduced
and applied to the CSNS/RCS. The Twiss parameters
can be well decomposed based on the turn-by-turn BPM
data, even in the existence of large noise in the BPM
data. By comparing the applications of the two cate-
gories in the CSNS/RCS, it is found that FastICA is
appropriate for the strong signal and the noise level
should be strictly controlled. The SOBI is more robust
for noise and more powerful to extract very weak signals,
but it requires that the signal spectrum be narrowband
and not overlapping with each other. In the CSNS/RCS
case, the separation among the modes can meet the
requirement of SOBI, so SOBI will be adopted in the
CSNS/RCS commissioning. In the simulation study,
magnet errors were not introduced to the CSNS/RCS
lattice, so the Twiss parameters obtained from ICA are
very close to the theoretical value. The ICA application
on CSNS/RCS with magnet errors will be done in our
future study.

We wish to thank Professor Lee S Y for his helpful

suggestions and useful discussions on ICA application.
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