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Abstract: We reanalyze the recent computation of the amplitude of the Higgs boson decay into two photons

presented by Gastmans et al. [1, 2]. The reasons for why this result cannot be the correct one have been discussed in

some recent papers. We address here the general issue of the indeterminacy of integrals with four-dimensional gauge-

breaking regulators and to which extent it might eventually be solved by imposing physical constraints. Imposing

gauge invariance as the last step upon Rξ-gauge calculations with four-dimensional gauge-breaking regulators, allows

us to recover the well known H→γγ result. However we show that in the particular case of the unitary gauge, the

indeterminacy cannot be tackled in the same way. The combination of the unitary gauge with a cutoff regularization

scheme turns out to be non-predictive.
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1 Introduction

Recently some attention has been re-focused on the
W-loop contribution in the calculation of the H → γγ

amplitude because of a result presented by Gastmans et
al. [1, 2] turning out to be at odds with the renowned
one of Refs. [3, 4]. It goes without saying that, if cor-
rect, the result in Refs. [1, 2] would have had relevant
consequences for the ongoing Higgs boson searches at
the LHC.

Starting from the observation that the full amplitude
H→ γγ is free of ultraviolet and infrared singularities,
Gastmans et al. performed their calculation in four di-
mensions with no regulators and used the unitary gauge
to consider only the physical degrees of freedom. A gauge
invariant amplitude is obtained with the ‘Dyson subtrac-
tion’ [5], leading to

M =
e2g

(4π)2mW

[3τ+3τ(2−τ)f(τ)]

×(k1·k2gµν−kµ
2 kν

1 )εµ(k1)εν(k2), (1)

where τ =
4m2

W

m2
H

and

f(τ)=















arcsin2(τ−
1
2 ) for τ >1

−1

4

[

ln
1+

√
1−τ

1−
√

1−τ
−iπ

]2

for τ <1

. (2)

This amplitude, which happens to vanish in the
mW/mH→0 limit (contrary to the standard one), would
imply a reduction of the decay width Γ (H→γγ) by about
50% for mH ≈ 120 GeV, with respect to that found in
Refs. [3, 4].

The standard H → γγ amplitude was computed in
‘t Hooft-Feynman gauge with dimensional regulariza-
tion [3], background field methods [4], and in the unitary
gauge with renormalization group analysis [4]. It reads
as

M =
e2g

(4π)2mW

[2+3τ+3τ(2−τ)f(τ)]

×(k1·k2g
µν−kµ

2 kν
1 )εµ(k1)εν(k2). (3)

Gastmans et al. cast some doubt on the reliability
of using dimensional regularization and prefer their re-
sult with the motivation that it would respect some
mW/mH → 0 ‘decoupling limit’, which has indeed no
reason to hold true, as explained in Refs. [6–9] in the
framework of the equivalence theorem [10].

The results of Refs. [1, 2] have been criticized by a
number of recent papers [6–9, 11–13].

The criticism concerns the absence of regulators,
leading to ambiguities in the intermediate steps of the
calculation, the use of Dyson subtraction and the refer-
ence to the Appelquist-Carazzone theorem [14] to justify
the decoupling.

The amplitude H → γγ has been calculated in sev-
eral ways, all confirming the old result of Refs. [3, 4], as
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follows:
1) The authors of Ref. [7] redid the calculation in four

dimensions in the unitary gauge with a gauge-invariant
regularization method (Pauli-Villars like) [15]. They
stress the importance of having set an explicit regular-
ization scheme to control finite terms which guarantee
gauge invariance through all intermediate steps of the
calculation. The authors cross-check the calculation with
an independent one in dimensional regularization and
underscore that no renormalization condition should be
applied in the presence of only finite terms. Thus they
conclude that the calculation presented by Gastmans et
al. must be wrong because it is finite and not gauge-
invariant.

2) The authors of Ref. [8] perform the calculation
in dimensional regularization both in the unitary and
in Rξ gauges (the same as in Ref. [9]). It is pointed
out that, without any regulator, the coefficient of gµν ,
arising upon four-dimensional symmetric integration in
renormalizable gauges, is an indeterminate form of the
kind ∞−∞ – also responsible of the breaking of gauge
invariance – and that in the unitary gauge the same hap-
pens to the coefficient of kµ

2 kν
1 .

3) H. S. Shao et al. [11] perform the calculation using
a four-dimensional momentum cutoff regularization both
in the ‘t Hooft-Feynman and unitary gauges. Within the
latter they obtain the same result of Refs. [1, 2] starting
with a particular routing of momenta. They also get the
terms to be added after a shift in the loop momentum:
these contributions sum up to zero when the momen-
tum choice of Refs. [1, 2] is adopted. Performing the
calculation in the ‘t Hooft-Feynman gauge, the authors
recover the same gauge invariant result as the one ob-
tained in dimensional regularization [3] by subtracting
the contribution of all non-constant diagrams (evaluated
at k1 = k2 = 0). The result is independent of the loop
momentum choice because the divergences are only log-
arithmic.

4) F. Bursa et al. [13] perform the calculation of the
H→γγ decay amplitude using a (gauge invariant) space-
time lattice regulator and obtain a very good numerical
agreement with the decay amplitude evaluated with di-
mensional regularization.

Summarizing, in Ref. [8] it is highlighted that the
problem of Refs. [1, 2] resides in the absence of regula-
tors. In Ref. [11], however, it is shown that the use of
cutoff regularization in the unitary gauge leads to con-
firm the result by Gastmans et al. Thus we might observe
that, if there is a problem in the latter calculation, it is
not in the lack of a regulator but rather in the combina-

tion of the unitary gauge with the use of non-gauge in-
variant regulators. As the cutoff regularization has been
widely used in the literature, we explore further its con-
nection with the unitary gauge: in particular we attempt
to get a deeper understanding of the result presented in
Ref. [11].

2 The critical integrals in the H → γγ

amplitude

At the core of the problem of the H→γγ amplitude
calculation is the calculation of the integral

Iµν =

∫
d4l

gµνl
2−4lµlν

(l2−M 2+iε)
3 , (4)

where M 2 = m2
W−x1x2m

2
H, and x1,x2 are Feynman pa-

rameters. According to Gastmans et al., performing the
integral in four dimensions with symmetric boundaries1),

we can substitute lµlν→
1

4
l2gµν , leading to Iµν =0. Here

we can appreciate the difference with respect to dimen-
sional regularization (DR), where

IDR
µν (n)=

∫
dnl

gµνl
2−4lµlν

(l2−M 2+iε)3
=−igµν

π2

2
+O(n−4). (5)

Gastmans et al. conclude that IDR
µν (n) must have a dis-

continuity in n =4, thus mining the foundations of the
DR technique stating that integrals are not analitic in n
dimensions.

Let us start from the four-dimensional integral in
Eq. (4). After Wick rotation2) and rescaling l → l/M ,
we get

Iµν =i

∫
d4l

δµν l2−4lµlν

(l2+1)
3 . (6)

To simplify the discussion, we focus on the case µ = 1,
ν=1

I11=i

∫
d4l

l2−4l21
(l2+1)3

=i

∫
d4lF11 (l). (7)

The integrand is not a summable function: it is not
positive everywhere in the domain of integration, and∫
d4l |F11|=∞, which means that the integral is not de-

fined per se - the value depends on how the boundary is
chosen to behave at infinity. We therefore compute the
value of the integral over different integration domains
with different behaviors at infinity: we will observe how
the integral may assume every finite value, and even di-
verge.

As a first example, let us consider a ‘spherical cutoff’
in the sense described below. In polar coordinates, we

1) Since the integral in Eq. (4) does not depend on any external momentum, for tensor invariance it must be Iµν =Igµν ; by saturating
both sides with gµν , we have Iµνgµν

→4I, l2gµν→4l2 and lµlν→l2, then we can solve with respect to I. We have the same result if we

substitute lµlν→
1

4
l2.

2) Which amounts to the following substitutions: d4l→id4l, gµν→−δµν , l2→l2E and lµ→lEµ .
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write

I11 = i

∫Λ

0

dl
l5

(1+l2)
3

∫
dΩ4 (1−4cos2θ)

= i4π

∫Λ

0

dl
l5

(1+l2)
3

∫
π

0

dθ sin2θ(1−4cos2θ)=0. (8)

Λ is an adimensional cutoff, with l being an adimensional
integration variable. The angular part vanishes, so there
are no problems with the logarithmic divergence of the
radial part. Actually, every integration domain which
has the li ↔±lj symmetry, leads to an identically van-
ishing integral.

As a second case we choose a non-symmetrical do-
main of integration. For example, we integrate F11 over

the elliptical domain
l21

1+ε
+l22+l23+l246Λ2 (see Fig. 1)

I11 = i4π
√

1+ε

∫Λ

0

dll5
∫
dθsin2θ

× 1−(4+3ε)cos2θ

(1+l2+l2εcos2θ)
3

Λ→∞−−−→iπ2 8+4ε−ε2−8
√

1+ε

2ε2
.

(9)

The integral in Eq. (9) can assume different finite values
as a function of ε.

Fig. 1. We integrate F11 =
(

l2−4l21
)

/
(

1+l2
)3

over
an elliptic domain. Because of the cylindrical
symmetry, the graphic is the same independent
of lk=l2,l3,l4. The darker the background is, the
larger the F11 value. The boundary is solid when
F11>0, and is otherwise dashed.

Choosing asymmetric boundaries, we even loose ten-
sor invariance, obtaining a 4×4 matrix of unrelated, inde-
terminate terms. This translates into the fact that Iµν is
no longer proportional to δµν as it should be the case (see
Eq. (6)). We seek an appropriate choice of the bound-
aries for all the terms in the Iµν matrix in such a way to

recover a δµν structure. We can therefore compute the
Iµν entries by choosing the same asymmetric boundary
on all diagonal terms, and generic symmetric boundaries
for all off-diagonal terms. In this way, all diagonal terms
will have the same indeterminate value I , whereas off-
diagonal terms will vanish. We thus obtain Iµν = Iδµν ,
with I being an indeterminate (even divergent) constant.
In Appendix A we give more details on this. We also con-
sider the case of Schwinger regularization to remark that
the indeterminacy of the critical integrals in these calcu-
lations can be solved only with physical constraints as
there is no mathematical prescription which can univo-
cally determine them.

Gastmans et al. rely on their finite (equal to zero) re-
sult for the integral of the type of Eq. (4), which follows
from a particular choice of the integration domain. This
also explains why the calculation of Ref. [11], in which
a spherical cutoff is explicitly used, leads to the same
result found by Gastmans et al. in unitary gauge: the
choice of the integration domain in Ref. [11] is the same
as the one implicitly taken in Refs. [1, 2].

The authors of Ref. [8], on the other hand, underscore
the fact that the integral (4) is an indeterminate form of
the kind ∞−∞: it must be treated with some regulariza-
tion scheme. Gauge-invariance in the final result can be
implemented either a priori by choosing gauge-invariant
regulators (like Pauli-Villars or DR), or a posteriori by
applying an appropriate subtraction. We remark that in
the latter case integrals are not well defined, and their
values must be considered indeterminate.

If we choose a sharp spherical cutoff we still get
the Gastmans et al. result in a unitary gauge as was
first shown in Ref. [11]. On the other hand, if we use
renormalizable gauges in a cutoff scheme, we recover the
standard result (a ‘t Hooft-Feynman gauge is used in
Ref. [11]).

Does the fact that two different results are obtained
using two different gauge choices mean that a cutoff
scheme is not to be pursued at all? In the following
we show that the problem does not reside in the use of a
cutoff scheme by itself but rather in figuring out that dif-
ferent ways (spherical, elliptical, etc.) of implementing a
cutoff scheme amount to different values of the integrals,
i.e., to indeterminate coefficients. We can actually use
some cutoff schemes provided that there is a clear recipe
on how to absorb the indeterminate coefficients arising in
the calculation, also restoring gauge invariance. We will
show that such a recipe cannot be found in the unitary
gauge.

3 Considerations on power counting and

gauge invariance

Jackiw [16] showed that indeterminacy can arise if we
use regulators which have less symmetry than the the-
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ory, and it is not necessarily resolved when we restore the
symmetry at the end of the calculation. We can simply
understand the case of gauge symmetry: gauge invariant
regulators decrease the degree of divergence of the inte-
gral, making it finite and regulator independent. Indeed,
by naive power counting, we know that the amplitude
H → γγ is logarithmically divergent in renormalizable
gauges. In gauge invariant regularizations, we can group
two momentum powers in the numerator to extract the
gauge invariant factor k1·k2gµν−kµ

2 kν
1 , so that the ampli-

tude becomes finite. Also in the unitary gauge we expect
the same finite amplitude after a not-straightforward
cancellation of higher divergent terms. However, this
cannot be done in cutoff regularization where the Ward
identity and gauge invariance are spoiled by the breaking
of shift invariance. The expectations of Gastmans et al.
to get a finite amplitude which needs no regulator are
disappointed by the choice of four-dimensional symmet-
ric integration, which implicitly uses a spherical cutoff
scheme, leading to the breaking of gauge invariance and
to a divergent amplitude.

To subtract the divergence in the cutoff regulariza-
tion scheme and, in general, all cutoff-dependent terms,
we need some counterterms. Breaking gauge symme-
try, we have the most general lagrangian with all possi-
ble combinations of bare fields and bare couplings, even
an ad hoc counterterm of the form δm0Ah0A

2
0. This

is what Dyson subtraction means: hide all divergent,
cutoff-dependent, non-gauge-invariant terms into a coun-
terterm, which would vanish in a gauge invariant regu-
larization scheme.

We have computed the H → γγ amplitude in the
‘t Hooft-Feynman gauge without calculating divergent
integrals, we find:

Mµν
ξ=1 =

e2g

(4π)2mW

[

−kµ
2 kν

1 (2+3τ+3τ (2−τ)f (τ))

−2m2
H

(

1+
3

2
τ

)∫1

0

dx1

∫1−x1

0

dx2

∫
d4l

iπ2

× gµνl2−4lµlν

(l2−1+4x1x2τ+iε)
3

+
1

2
m2

Hgµν

(

1+
3

2
τ+3τ (2−τ)f (τ)

)

]

. (10)

We remark that the first term (proportional to kµ
2 kν

1 )
contains only well-defined finite integrals; the second
term is indeterminate (vanishing according to symmetric
integration as in Refs. [1, 2]). With the use of DR, the

second term would give
1

2
m2

Hgµν

(

1+
3

2
τ

)

, leading to the

well known gauge-invariant expression. However, let us
stay in the framework of gauge-breaking regularizations.

In Ref. [11] a modified version of Dyson subtraction is
performed to recover gauge invariance. One might even
wonder whether Dyson subtraction is allowed without
divergent terms [7]. As we have just shown, the integral
in the second term is probably divergent and in any case
cutoff-dependent, so we are allowed to add a countert-
erm and impose gauge invariance as a renormalization
condition. In doing so we get the correct amplitude in
Eq. (3). We would have the same expression by using
symmetric integration: every value of the integral disap-
pears into the counterterm. We therefore conclude that
the arbitrariness related to the choice of the boundary
(or, in general, of the regulator) is solved by imposing
gauge invariance.

Why is Gastmans et al. ’s amplitude different from
the standard one? As shown in Ref. [2], in a unitary
gauge we have another divergent integral

A′=2

∫
simplex

dx1dx2

∫
d4l

[

(kµ
2 kν

1−k1·k2g
µν)l2

−2kν
1 (k2·l)lµ−2kµ

2 (k1·l)lν+2(k1·k2)l
µlν

+2gµν (k1·l)(k2·l)
] 1

(l2−m2
W+x1x2m2

H+iε)
3 (11)

By symmetric integration the integral vanishes,
whereas dimensional regularization leads to A′

DR(n) =
iπ2(kµ

2 kν
1−k1·k2g

µν)+O(n−4). The integral has the same
indeterminate behavior of the former one: the value de-
pends on the choice of the boundary. We can say that
A′ = Jkµ

2 kν
1 +J ′gµν , with J and J ′ indeterminate con-

stants. While in Eq. (10) the tensor kµ
2 kν

1 has a well-
defined finite coefficient and we can tune the rest of the
amplitude on it, in unitary gauge this coefficient is inde-
terminate, possibly divergent: we must then add another
counterterm δg0Ah0(∂µ

Aν
0)

2
to absorb the divergence.

We now have two counterterms and we need two
renormalization conditions to fix the arbitrariness. The
only Dyson subtraction (which means imposing gauge in-
variance) is not enough anymore. The result in Eq. (1) is
still arbitrary, and allows the addition of whatever gauge
invariant kµ

2 kν
1−k1·k2gµν term. The other condition could

be, for example, the requirement of the validity of the
equivalence theorem [10] in the limit mW→0, or the in-
variance of the amplitude in both the ‘t Hooft-Feynman
and the unitary gauge: both conditions fix the value of
the amplitude in Eq. (1) to the standard result in Eq. (3).
The indeterminacy is solved; we recover also the indepen-
dence of the amplitude on gauge choice and regulator
choice.
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4 Conclusions

We have analyzed the computation of the amplitude
H→ γγ by Gastmans et al. [1, 2], to understand why
it turns out to be different from the standard result in
Eq. (3). Integrals of the form

Iµν =

∫
d4l

gµνl
2−4lµlν

(l2−M 2+iε)3
, (12)

are not well defined. We have provided some explicit ex-
amples within cutoff regularization, obtaining different
values by varying integration boundaries.

In the ‘t Hooft-Feynman gauge and in a cutoff regu-
larization scheme, see Eq. (10), we obtain

Mµν
ξ=1=

e2g

(4π)2mW

[−kµ
2 kν

1 (2+3τ+3τ (2−τ)f (τ))+Igµν ],

(13)
where I is a constant which depends on the boundary
shape. This makes it indeterminate as there is no physi-
cal prescription on the choice of the integration boundary
shape. On the other hand, the use of a gauge invariant
regularization scheme automatically provides the recipe
on how to evaluate the integrals.

Since the term kµ
2 kν

1 , in Eq. (12), has only one finite

unambiguous coefficient, we are able to solve the indeter-
minacy by imposing gauge invariance at the end of the
calculation.

However, we have shown that, in the unitary gauge,
both the coefficients of kµ

2 kν
1 and gµν are indeterminate

in the sense of integration boundary shape dependency.
Imposing only one renormalization condition (like im-
posing gauge invariance by Dyson subtraction) is not
enough anymore. Given the equivalence of Rξ gauges
with a unitary gauge as ξ→∞, the problem we discuss
is likely to be related to the exchange of this limit with
an integral sign for non-Riemann-summable functions:
the coefficient of kµ

2 kν
1 arises from highly divergent terms

which do not appear at finite values of ξ.
Gastmans et al.’s expression in Eq. (1) is still ambigu-

ous upon Dyson subtraction, and allows the addition of
whatever term of the form kµ

2 kν
1 −k1·k2gµν . This arbi-

trariness can be fixed by requiring the validity of the
equivalence theorem, or by imposing the equality of am-
plitudes in the unitary and ‘t Hooft-Feynman gauges. In
other words, we are able to add terms to Eq. (1) in order
to match the standard result Eq. (3).

The combination of unitary gauge with a cutoff
regularization scheme simply turns out to be non-
predictive.

Appendix A

For the sake of simplicity in the following we consider a
two-dimensional version of Iµν in Eq. (6)

Iµν =i

∫
d2l

δµν l2−2lµlν

(l2+1)2
. (A1)

This version of Iµν has the same properties as its four-
dimensional counterpart, namely: i) the integral is superfi-
cially divergent as a logarithm, ii) it is identically zero for
symmetric integration domains, iii) the integrand function
has no definite sign. The conclusions we will draw from the
following calculations in two dimensions remain unaltered in
four dimensions: here we have simply avoided superfluous
technical complications.

As we did before, let us start by computing the I11 term.
We realize that I11 can be mapped into an entry of the I12

kind upon a rotation by 45◦ of l1l2 axes. I11=I12 only if the
integration domain is rotated accordingly. Since the calcu-
lations turn out to be simpler using the {12} entry, we will
make our observations on this case only

I12=i

∫
d2l

−2l1l2

(1+l2)2
=i

∫
d2lF12. (A2)

At any rate we remark that the domains of integrations will
be chosen in such a way that eventually all off-diagonal Iµν

entries will vanish as to eventually recover the δµν tensor
structure.

The integrand in Eq. (A2) is negative when l1l2 > 0 (.

and 0 quadrant), and positive otherwise. In the former case,
we bound a domain with two quarters of a circumference of
radius Λ; in the latter case we use a square with edge Λ
(Fig. A1 (left panel)). We have

I12 = −4i

∫Λ

0

dl
l3

(1+l2)2

∫
π/2

0

dθsinθcosθ

+4i

∫
[0,Λ]×[0,Λ]

dl1dl2
l1 l2

(1+l21+l22)
2

= i

(

Λ2

1+Λ2
+ln

1+Λ2

1+2Λ2

)

Λ→∞

−−−−→i

(

1+ln
1

2

)

. (A3)

Again we get a finite non-zero value. The leading divergences
are the same in each quadrant, whereas the finite part is
boundary-dependent, so that the sum does not vanish.
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Fig. A1. We integrate F12 = −2l1l2/
(

1+l2
)2

over a mixed (circle-square) boundary (left panel), regulating the
function with a smooth cutoff Λ (right panel).

Fig. A2. Riemann rearrangement. Light gray regions have a positive integral pk, dark gray regions have negative
integrals nk. We see that the negative region becomes smaller and smaller than the positive region, so that it
cannot cancel the logarithmic divergence.

More in general, we can slice R
2 in a countable set of

bounded regions, in order to reduce the integral over the
whole R

2 to a countable sum of finite integrals, i.e., to a
series. We can thus use the Riemann rearrangement theorem
[17] to obtain whatever finite value or logarithmic divergence.

For example, let us consider all the concentric circum-
ferences with integer radius, thus slicing R

2 into annuli: the
integral of F12 over each annulus vanishes by circular symme-
try. Therefore we slice each annulus into a positive region Pk

where F12 >0, and a negative region Nk where F12 <0 (Fig.
A2). We therefore have

pk=

∫
Pk

d2lF12=
1

k2+2k+2
−

1

k2+1
+log

k2+2k+2

k2+1
,

nk=

∫
Nk

d2lF12=−pk.

(A4)

The pk form a bounded sequence of positive terms converging
to 0. We can find that the greatest term of the sequence is
p1=M≈0.62. Specularly, the nk form a sequence of negative
terms converging to zero, bounded by n1 =−M ≈−0.62. If
we take the union of all Pk and Nk, we recover the whole
R

2, therefore if we sum all pk and nk we recover the whole
integral. Since both

∑

kpk and
∑

knk diverge separately,
we must specify the correct ordering of terms. We start by
adding the first positive terms pk until we exceed 1+M , and
then add the first negative term n0. Since all nk satisfy the
relationship −M<nk<0, we still have

p0+p1+···+pN1−|n0|>1. (A5)

We can continue adding positive terms until we exceed 2+M ,
and then add n1, and so on. The resulting sum covers all
Pk and Nk regions. The series diverges, and so does the
integral.
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One might wonder whether we have the same behavior
with a smooth cutoff. We calculate Eq. (A2) with a Schwinger
regulator [18]

I12 = i

∫
d2l(−2l1l2)

∫
∞

1
Λ2

dsse−s(1+l2)

= −iΓ

(

0,
1

Λ2

)
∫2π

0

dθ sinθcosθ=0, (A6)

where Γ (a,b) is the incomplete Gamma function. Again, the
angular part of the integral vanishes, and so we do not care
about the logarithmic divergence in the radial part. However

if we deform the cutoff giving an angular dependency to it,
e.g. Λ → Λ(θ) = Λexp(εsin2θ) (Fig. A1 (right panel)), we
obtain

I12 = i

∫
d2l(−2l1l2)

∫
∞

1
Λ2(θ)

dsse−s(1+l2)

= −i

∫2π

0

dθ sinθcosθΓ

(

0,
1

Λ2 (θ)

)

Λ→∞

−−−−→−iπε. (A7)

Also in this case, the value of the integral depends on the
shape of the cutoff function, no matter if smooth or sharp.
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