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Abstract: In this paper, we have solved the Schrödinger equation for a particular kind of Morse potential and find

its normalized eigenfunctions and eigenvalues, exactly. Our work is based on the Laplace transform technique which

reduces the second-order differential equation to a first-order.
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1 Introduction

The exact solution of the Schrödinger equation for
various potentials is an important task in non-relativistic
quantum mechanics, because considerable information is
found in the wave functions of any quantum system.
Therefore, researchers have focused on this issue and
have studied known potentials, for example the Morse
potential [1] which is in our present consideration. This
quantum system is one of a class of potentials [2] in which
the Schrödinger equations have been exactly solved. In-
deed, this potential is the most appropriate candidate for
the description of the interaction between the two atoms
in diatomic molecules. It is known that the two atoms in
a diatomic molecule have a balance distance and oscillate
around their equilibrium point. If the distance between
the two atoms is greater than this value, the chemical
bond between them is broken; this phenomenon is well
illustrated by the Morse potential. In addition, this po-
tential is also used in spectroscopy, diatomic molecular
vibration, scattering and in the description of vibrations
of polyatomic molecules [3–6]. [7] investigated the con-
trollability of a quantum system for a Morse potential
which possesses a finite dimensional energy spectrum.

From another view, the Morse potential is one class of
potentials which is introduced in the finite-dimensional
Hilbert space, as we have also shown in this paper. In
fact, the intention of our presentation is to construct the
coherent states of such a system which particularly deals
with a finite-dimensional Hilbert space. Our motivation
arises from the fact that the coherent states play an im-
portant role in various fields of physics [8–10] (for a re-

cent set of papers in this field refer to [11]). These states
were firstly introduced in the infinite-dimensional Hilbert
space of a harmonic oscillator. But in recent decades, the
concept of coherent states has been generalized in very
many ways. One of these generalizations that has at-
tracted a lot of attention is the extension of coherent
states to the finite-dimensional space, for instance, the
physical systems in which their energy spectrum contains
a finite number of states [12]. In this typical work the
energy spectrum and eigenfunctions of the potential are
the first necessary tools for constructing coherent states
and then one can investigate the nonclassical properties
for the obtained states.

Moreover, in recent years, several methods have been
proposed to solve the Schrödinger equation for the Morse
potential. Dayi and Duru introduced the q-Schrödinger
equation for the potential V (u) = u2+1/u2; u> 0 [13].
Then, they studied a relationship between the Morse po-
tential with the above potential by a q-canonical trans-
formation, through which the q-Schrödinger equation for
the Morse potential may be defined and solved. Aktas
and Ramazan have calculated the bound-state energies
of the q-deformed Morse potential by using the Hamil-
tonian Hierarchy method within the framework of the
SUSYQM [14]. This is indeed the same method that was
introduced by Schrödinger, i.e., the factorization method
[15], in which the solvable models can be transformed in
terms of appropriate creation and annihilation operators.
Another method is the Laplace (or integral) transform
which has been used for solving differential and inte-
gral equations. Chen has used this technique for solving
the Schrödinger equation of the Morse potential [16].
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Recently, the Nikiforov-Uvarov (NU) method [17] is in-
troduced which is based on the solution of a second-order
differential equation with special orthogonal functions
[18]. By means of this method , the Schrödinger equation
is reduced to a generalized equation of hypergeometric
type functions. Berkdemir and Han have used the NU
method for rotational correction on the Morse potential
[19]. Other techniques for solving the Schrödinger equa-
tion for the Morse potential are: the asymptotic iteration
method (AIM) [20, 21], the path integral method [22],
etc. In this paper, we focus on solving the Schrödinger
equation and finding the energy spectrum together with
the corresponding eigenfunctions of a special type of
Morse potential (which we call the l-parameter Morse
potential) by using the Laplace transform.

2 Exact solution of the Schrödinger

equation for the Morse potential

In this paper we want to consider the (shifted) Morse
potential

V l(x)=(l+1)2−(2l+3)e−x+e−2x, (1)

where l is a constant. It is obvious that this partic-
ular form of Morse potential considered in Ref. [23] is
rather different from the one considered in Ref. [16],
V (x)=Dee

−2ax
−2Dee

−ax; i.e. they cannot be obtained
again from each other by a change of variable and so
on (this will be more clear from our final obtained re-
sults). Substituting Eq. (1) into the time independent
Schrödinger equation yields
(

−

d2

dx2
+e−2x

−(2l+3)e−x+(l+1)2−El
n

)

ψl
n(x)=0, (2)

where we have set ~
2/2m=1. Now we define k and β2 as

k = 2l+3, (3)

β2 = (l+1)2−El
n. (4)

Thus, Eq. (2) simplifies to
(

d2

dx2
−e−2x+ke−x

−β2

)

ψl
n(x)=0. (5)

After a change of variable as y = e−x, Eq. (5) can be
rewritten as

(

y2 d2

dy2
+y

d

dy
−y2+ky−β2

)

ψl
n(y)=0. (6)

If we introduce ψ(y) as follows

ψ(y)=yAf(y), (7)

where A is a constant, then by inserting (7) into (6), one
obtains
[

y2 d2

dy2
+(2A+1)y

d

dy
−y2+ky+(A2

−β2)

]

f(y)=0. (8)

Let us take A=−β (the case A=β is clearly not valid),
thus we have the second-order differential equation

[

y
d2

dy2
−(2β−1)y

d

dy
−y+k

]

f(y)=0. (9)

The next step is to reduce the above second-order differ-
ential equation to the first-order differential equation by
using the Laplace transform technique. The necessary
Laplace transforms are as follows [24]

£

(

y
d2f(y)

dy2

)

= −2pF (p)−p2 dF

dp
, (10)

£(yf(y))=−

dF (p)

dp
, (11)

£

(

df(y)

dy

)

=pF (p), (12)

£(f(y))=F (p). (13)

Using (10)–(13), in Eq. (9), it reduces to the following
first-order differential equation:

(1−p2)
dF (p)

dp
+[k−(1+2β)p]F (p)=0. (14)

Therefore, we find F (p) with a simple integration proce-
dure results in:

F (p)=N (p−1)
k−2β−1

2 (p+1)
−k−2β−1

2 , (15)

where N is an integration constant. Our further goal is
to obtain f(y), which is possible by taking the inverse
Laplace transform of Eq. (15) giving us:

f(y)=Ne−yy2β

1F1

(

2β−k+1

2
;2β+1;2y

)

Γ (2β+1)
, (16)

where 1F1(a;b;y) is the Kummer confluent hypergeomet-
ric function. In obtaining (16) we have used the following
integral relationship [24]∫y

0

f1(t)f2(y−t)dt=F1(s)F2(s), (17)

where f1(t) and f2(t) are the inverse Laplace transforms
of F1(s) and F2(s), respectively. The relationship be-
tween Kummer confluent hypergeometric function and
associated Laguerre polynomials reads as

1F1(−n;u+1;y)=
n!Γ (u+1)

Γ (u+n+1)
Lu

n(y), (18)

where Lu
n(y) is the associated Laguerre polynomials.

Substituting Eq. (18) into (16) gives us the following
result

f(y)=N
n!

Γ (k−n)
e−yyk−2n−1Lk−2n−1

n (2y), (19)
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where we have assumed that

u=2β, 2β−k+1=−2n, (20)

and N may be determined from the normalization con-
dition. Inserting (19) into Eq. (7) yields the final form
of the eigenfunctions as:

ψl
n(y)=Nne−yyl−n+1L2(l−n+1)

n (2y), Nn=N
n!

Γ (k−n)
,

(21)

where Nn can be obtained from the normalization con-
dition as follows:

Nn=

(

n!22l−2n+3

(2l−n+2)!

)1/2

. (22)

Equation (21) may be expressed in terms of the main
variable x as:

ψl
n(x)=Nnexp(−e−x)e−(l−n+1)xL2(l−n+1)

n (2e−x). (23)

Lastly, considering (3), (4) and (20) gives the spectrum
of the Morse potential with l-parameters introduced in

(1) as

El
n = (l+1)2−(l+1−n)2

= −n2+2(l+1)n. (24)

Noticing that in Eq. (23) the associated Laguerre poly-
nomial, L2(l−n+1)

n (2x), is valid for 2l−2n+2>−1, thus
the values of n are limited to n=0, 1, 2, ··· ,l, i.e., the
associated spectrum is in a bound state. We end our
discussion by emphasizing the fact that our considered
Morse potential and the case considered in Ref. [16] are
two different sets of the family of Morse potentials.

3 Conclusion

We have used a certain type of Morse potential and
solved its Schrödinger equation by using a Laplace trans-
form. We reduced the second-order differential equation
to a first-order differential equation and we found the
energy spectrum and corresponding eigenfunctions. Our
main results are summarized in Eqs. (23) and (24)1).
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1) Notice that in Ref. [6], the solution of first-order differential equation in (10) of the paper should be corrected as

F (p)=N

(

1−
1

p+ 1
2

)
k−2β−1

2
(

p+
1

2

)

−(2β+1)

.
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