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Abstract: We investigate the relativistic equation for particles with spin 1/2 in the q-parameter modified Pöschl-
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present approximate solutions of the Dirac equation with these potentials for any spin-orbit quantum number κ under
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obtain the energy eigen-values equation.

Key words: Dirac equation, relativistic scattering states, modified Pöschl-Teller potential, spin symmetry, tensor
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1 Introduction

The problem of the Dirac equation has been the sub-
ject of much discussion for decades because of its im-
portance in the prediction of antiparticles, and also for
the description of particle spin and magnetic moments.
In fact, exact solutions of the wave equations permit a
better understanding of the quantum behavior of rela-
tivistic particles such as the nucleus in nuclei, in the
presence of external fields [1]. Solutions for the wave
equations have recently become interesting in view of
the spatially-dependent mass (SDM). There has been in-
creasing interest in searching for analytic solutions of rel-
ativistic equations with SDM [2–4]. Extensive applica-
tions of this formalism have been performed in different
areas of physics such as condensed matter physics and
materials science like compositionally graded crystals [5],
in describing the transport properties of semiconductors
and quantum dots [6, 7], and it also gives interesting
results in quantum liquids [8], the energy density many-
body problem [9], 3He clusters [10], metal clusters [11],
and full/partial Gaussian wave packet revival inside an
infinite potential [12].

The concept of SDM formalism comes from the
effective-mass approximation [13, 14], which is a use-
ful tool for studying the motion of carrier electrons in
pure crystals and for the virtual-crystal approximation
in the treatment of homogeneous alloys (where the ac-
tual potential is approximated by a periodic potential),

as well as graded mixed semiconductors (where the po-
tential is not periodic). In this field, there has been an
extraordinary development in crystal-growth techniques
like molecular beam epitaxy, which allow the produc-
tion of nonuniform semiconductor specimens with abrupt
heterojunctions [7]. In these mesoscopic materials, the
effective mass of the charge carrier is position depen-
dent. In addition, the effective mass of an electron/hole
in the thin layered quantum wells varies with the com-
position rate. In such systems, the mass of the electron
may change with the composition rate, which depends
on the position, and to external potentials, where a par-
ticle propagating in solid state systems can face a situ-
ation where its effective mass changes in space. There-
fore, the corresponding Schrodinger equation should be
formulated in a correct form, in order to comply with
hermiticity and flux conservation. If the particles are
described by the Dirac equation, the information on the
material properties is encoded both in the Fermi velocity
[15] and in the mass. We can then imagine the possibility
of producing a heterostructure where the Fermi velocity,
νF(r), and the mass change with the position of the par-
ticle. The effective mass is also an important parameter
in Landau’s Fermi liquid theory that deals with low-level
excited states of strongly interacting systems in a very
appealing single particle approximation [16]. In addition,
to its practical applicability side, conceptual problems
of delicate nature erupt in the study of quantum me-
chanical systems with position-dependent mass (e.g. the
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momentum operator does not commute with m(r), the
uniqueness of the kinetic energy operator, etc). Com-
prehensive discussion on such issues can be found in,
e.g. [17–20, and related references therein]. Thus, one
leads to the study of quantum mechanical problems with
position-dependent effective mass, and the solution of the
Dirac equation under the circumstance where the mass
depends on the position of electrons will be of interest in
studying materials containing heavy elements. However,
such treatment encounters a nontrivial problem related
to ordering ambiguity in the quantization of the momen-
tum and mass operators in the kinetic energy term of the
effective Hamiltonian.

On the other hand, in order to get complete infor-
mation about quantum mechanical systems, one should
study the bound and scattering states in the presence
of an external potential. Therefore, the scattering prob-
lem has become an interesting topic in relativistic/non-
relativistic quantum mechanics, and the scattering of a
Dirac particle by a potential can be treated exactly by
finding the continuum solutions of the Dirac equation. In
recent years, the scattering problem has been extended
to the case where the mass depends on the spatial coor-
dinate [21–23].

There has also been continuous interest in studying
the solutions of scattering states within the framework
of non-relativistic and relativistic quantum mechanics for
central and non-central potentials [24–26]. Prof. Dong
and Lozada-Gassou studied the scattering of the two-
dimensional Dirac particle by the Coulomb potential
[27]. Arda et al. obtained the scattering solutions of
the one-dimensional Schrödinger equation for the Wood-
Saxon potential within the position-dependent mass for-
malism [28]. In Ref. [29], the authors investigated the
relativistic scattering state for the Klein-Gordon equa-
tion with Makarov potential, and discussed the analytical
properties of the scattering amplitude. Alhaidari [30] in-
vestigated the scattering state for the three-dimensional
Schrödinger equation for a large class of non-central po-
tentials.

On the other hand, the spin and pseudo-spin sym-
metries have attracted many theoretical investigations
during the past 15 years because of their successful de-
scription of observed experimental phenomena [31–34].
Concepts of spin and pseudo-spin symmetries and a ten-
sor potential have found interesting applications in the
field of nuclear physics [31, 33, 34]. Tensor potentials
were introduced into the Dirac equation with the sub-
stitution ~p → ~p− imωβ · r̂U(r) [32, 35]. In this way, a
spin-orbit coupling term is added to the Dirac Hamilto-
nian. Recently, tensor couplings have been used widely in
the studies of nuclear properties. In this regard, see [36–
41]. Ginocchio pointed out that the spin and pseudo-spin
symmetries may explain the degeneracies in some heavy

meson spectra (spin symmetry), or in single-particle en-
ergy levels in nuclei (pseudo-spin symmetry), when these
physical systems are described by relativistic mean-field
theories with scalar and vector potentials [31].

According to the report that was given in the re-
search, the SDM of the form [4] is

M(r)=m0+4V0

e−2αr

(1+qe−2αr)2
, (1)

if r→0, then M(r)=M0+2V0, if r→∞, then M(r)=M0,
and the modified Pöschl-Teller potential [4] is as follows

V (r)=− V0

cosh2
q αr

, (2)

where V0 is the depth of the well, α is related to the
range of the potential, and r is the relative distance from
the equilibrium position. This potential has been fre-
quently used in nuclear physics, molecular physics, chem-
ical physics and has undergone considerable theoretical
investigations [42–45]. It is also a short-range model po-
tential and used to describe bending molecular vibrations
[46, 47].

In addition, according to the report that was given
in Refs. [2, 36–41], the tensor potential Coulomb-like is

U(r)=−H

r
, H=

ZaZbe
2

4πε0

, r>Rc, (3)

where Rc =7.78 fm is the Coulomb radius, and Za and
Zb denote the charges of projectile a and target nuclei b,
respectively.

In the non-relativistic regime, different methodolo-
gies have been applied to solve the problem [48–50] and
the consequences have been analyzed [51–53]. Within
the present study, due to the recent interest in higher
dimensions, we intend to work on the case of SDM dis-
tribution (1) for the Dirac equation in the spin symmetry
under the above potential. We are going to consider the
Dirac equation for the modified Pöschl-Teller potential,
including the Coulomb-like tensor interaction under the
spin symmetry. In this work we also investigate the scat-
tering state and obtain the normalized wave functions.

Our stages are as follows. We first review the Dirac
equation in the D-dimension. Next, we review the spin
symmetry limit of the Dirac equation for two potentials.
Also, to get rid of the centrifugal term, we use a physi-
cal approximation and therefore provide radial solutions.
We obtain the energy eigenvalues equation by using the
Nikiforov-Uvarov [54] technique. Then, we investigate
the scattering state in this problem.

2 The Dirac equation in D-dimensions

The extension of physical problems to higher dimen-
sional spaces plays an important role in various areas
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of physics. Many physical systems of interest in quan-
tum mechanics have been thoroughly studied in D-
dimensional space [1, 55–58]. The Dirac equation in
natural units ~ = c = 1 in D-dimensional space with a
scalar potential S(r), a vector potential V (r), a tensor
potential U(r) and position-dependent mass M(r) can
be written as [55, 59]

HΨ(r)=EnrκΨ(r), (4)

where the r is a D-dimensional position vector with
Cartesian components r1, r2,··· ,rD and

H=

D
∑

j=1

α̂jpj+β̂ [M(r)+S(r)]−iβ̂α̂j .r̂U(r)+V (r), (5)

where Enrκ is the relativistic energy, and {α̂j} and β̂ are
the Dirac matrices, which satisfy the anti-commutation
relations

α̂j α̂k+α̂kα̂j =2δjk1, α̂jβ̂+β̂α̂j =0, α̂2
j =β̂2=1, (6)

and

pj =−i∂j =−i
∂

∂xj

j∈[1,D]. (7)

A set of the total angular momentum operators Jjk are
defined as:

Ljk = −Lkj =ixj ∂k−ixk∂j , (8)

Sjk = −Skj =iα̂jα̂k/2, Jjk =Ljk+Sjk. (9)

L2 =

D
∑

j<k=2

L2
jk=−

{

1

sinj−1xj

∂
∂xj

(

sinj−1xj

∂
∂xj

)

−
L2

j−1

sin2xj

}

, (10)

S2 =

D
∑

j<k=2

S2
jk, J2=

D
∑

j<k=2

J2
jk, (11)

where Ljk are the orbital angular momentum operators
and Sjk are the spinor operators.

For a spherically symmetric potential, the total angu-
lar momentum operator Jjk and the spin-orbit operator

K̂=−β̂

(

∑

j<k

iα̂jα̂kLjk+(D−1)/2

)

=−β̂(J2−L2−S2+(D−

1)/2) commutate with the Dirac Hamiltonian [5]. For a
given total angular momentum j, the eigenvalues of K̂,
the quantum number κ is related to the quantum num-
bers for spin symmetry ` and pseudo-spin symmetry ˜̀

as

κ=























































−(`+1)=−
(

j+
D−2

2

)

(s1/2,p3/2,etc.)

j=`+
1

2
, alined spin(κ<0)

+`=+

(

j+
D−2

2

)

(p1/2,d3/2,etc.)

j=`−1

2
, unaligned spin(κ>0)

, (12a)

and the quasi-degenerate doublet structure can be ex-
pressed in terms of a pseudo-spin angular momentum
s̃=1/2 and pseudo-orbital angular momentum ˜̀, which
is defined as

κ=



























































−˜̀=−
(

j+
D−2

2

)

(s1/2,p3/2,etc.)

j=˜̀−1

2
, aligned pseudospin(κ<0)

+(˜̀+1)=+

(

j+
D−2

2

)

(d3/2,f5/2,etc.)

j=˜̀+
1

2
, unaligned spin(κ>0)

, (12b)

where κ = ±1, ±2,···. For example, (1s1/2, 0d3/2) and
(1p3/2, 0f5/2) can be considered as pseudo-spin doublets.

Also, since V (r) is spherically symmetric, the group
of the system is the SO(D) group. Thus, the relations
between the Cartesian coordinates xi and the hyper-
spherical coordinates in D-dimensional space are defined
by [55, 60]

x1 = rcosθ1

xα = rsinθ1 ···sinθα−1cosφ α∈[2,D−1], (13)

xD = rsinθ1 ···sinθD−1sinφ,

The unit vector x̂ along x is usually denoted by x̂=x/r.

The sum of the squares of Eq. (10) gives r2=

D
∑

i=1

x2
i , thus,

r is the radius of a D-dimensional sphere where the vol-
ume element of the configuration space is given by

D
∏

j=1

dxj =rD−1drdΩ, dΩ=

D−1
∏

j=1

(sinθj)
j−1dθj , (14)

where r∈[0,∞), θk∈[0,π], k=1,2,··· ,D−2, φ∈[0,2π],, and
such spinor wave-functions can be classified according to
the hyper-radial quantum number nr and the spin-orbit
quantum number κ and can be written using the Pauli-
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Dirac representation [55, 60]

Ψnrκ(r,ΩD)

=

(

fnrκ(r,ΩD)

gnrκ(r,ΩD)

)

=r− D−1

2





Fnrκ(r)Y `
jm(ΩD)

iGnrκ(r)Y
˜̀

jm(ΩD)





= r− D−1

2





Fnrκ(r)Y `
jm(θ1 ···θD−1)

iGnrκ(r)Y
˜̀

jm(θ1 ···θD−1)





= r− D−1

2

(

Fnrκ(r)Φ(θ1=φ)H(θ2...θD−1)

iGnrκ(r)Φ(θ1=φ)H(θ2...θD−1)

)

, (15)

where fnrκ(r, ΩD) is the upper (large) component and
gnrκ(r,ΩD) is the lower (small) component of the Dirac
spinors. Using the D-dimensional polar co-ordinates
with polar variables r is the hyper radius and the an-
gular momentum variables θ1 ···θD−1, φ are the hyper
angle. Y `

jm(ΩD) and Y
˜̀

jm(ΩD) are the generalized spher-
ical harmonic functions coupled with the total angular
momentum j. The orbital and pseudo-orbital angular
momentum quantum numbers for spin symmetry ` and
pseudo-spin symmetry ˜̀ refer to the upper- and lower-
component, respectively.

Substituting (15) into (4), and separating the vari-
ables, we obtain the following coupled radial Dirac equa-
tion for the spinor components:

(

d

dr
+

κ

r
−U(r)

)

Fnrκ(r)=[Enrκ+M(r)−∆(r)]Gnrκ(r),

(16)
(

d

dr
−κ

r
+U(r)

)

Gnrκ(r)=[M(r)−Enrκ+Σ(r)]Fnrκ(r),

(17)

where ∆(r) = V (r)−S(r), Σ(r) = V (r)+S(r) and κ =
±(2`+D−1)/2. Eliminating Gnrk(r) and Fnrk(r) from
(16) and (17), we obtain the following two Schrödinger-
like differential equations for the upper and lower com-
ponents, respectively











d2

dr2
−κ(κ+1)

r2
+(Enrκ+M(r)−∆(r))(Enr κ−M(r)

−Σ(r))+
2κ

r
U(r)−dU(r)

dr
−U 2(r)

+

dM(r)

dr
−d∆(r)

dr
(M(r)+Enrκ−∆(r))

(

d

dr
+

κ

r
−U(r)

)











Fnrκ(r)=0,

(18)











d2

dr2
−κ(κ−1)

r2
+(Enrκ+M(r)−∆(r))(Enr κ−M(r)

−Σ(r))+
2κ

r
U(r)+

dU(r)

dr
−U 2(r)

+

dM(r)

dr
+

dΣ(r)

dr
(M(r)−Enrκ+Σ(r))

(

d

dr
−κ

r
+U(r)

)











Gnrκ(r)=0.

(19)

We note that the energy eigen-values in these equations
depend on the angular momentum quantum number `
and dimension D.

3 Exact solutions for the spin symmetry

limit

Equations (18) and (19) can not be solved ana-
lytically because of the last term in the equations.
It is convenient to solve the mathematical relation
(dM(r)/dr) = (dV (r)/dr) [59]. By using this rela-
tion, we can exactly solve Eq. (18). Substituting (1),
(2) and (3) into (18), considering spin symmetry, tak-
ing Σ(r) as the modified Pöschl-Teller potential and
∆(r)=Cs=const.(d∆(r)/dr=0), i.e. [61, 62], the equa-
tion obtained for the upper component of the Dirac
spinor Fnk(r) becomes

{

d2

dr2
− (κ+1)(κ+H+1)

r2

+(Enrκ−M0)(M0+Enrκ−Cs)

+(Enrκ−M0)
V0

cosh2
qαr

}

Fnrκ(r)=0, (20)

where (κ+H)(κ+H+1)/r2 is known as the centrifugal
term. Obviously, equation (20) cannot be solved exactly
due to the centrifugal term. To obtain a quasi-analytical
solution to the above equation, we must use an approxi-
mation for the centrifugal term. We have taken the fol-
lowing approximation [63–66]

1

r2
≈4α2

[

C0+
e−2αr

(1−qe−2αr)
2

]

, (21)

where the parameter C0 = 1/12 is a dimensionless con-
stant and a good approximation for small values of pa-
rameter α. However, when C0 = 0 then the new im-
proved approximation scheme becomes the conventional
approximation scheme suggested by Greene and Aldrich
[67]. Therefore, to see the accuracy of our approxima-
tion, we plotted the pseudo-centrifugal term, 1/r2, and
its approximation with parameter α=0.6, in Fig. 1.
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Fig. 1. (color online) The pseudo-centrifugal term
1/r2 (red curve) and its approximation Eq. (21)
(dotted blue curve).

By using a transformation of the form s =
tanh2αr(r∈[0,∞), s∈[0,1]), we rewrite it as follows

{

d2

ds2
+

1−3s

2s(1−s)

d

ds
+

1

[2s(1−s)]2
[−b3Ṽ0s

2

+(4C0qb1+b2b3+b3Ṽ0)s−4C0qb1]

}

Fnrκ(s)=0, (22)

where

b1=
(κ+1)(κ+H+1)

q
, b2=

Enrκ+M0−Cs

α2
,

b3=Enrκ−M0, Ṽ0=
V0

qα2
.

(23)

In the above two expressions, we applied the deformed
hyperbolic functions introduced for the first time by Arai
[68].

sinhqx=
ex−qe−x

2
, coshqx=

ex+qe−x

2
,

tanhqx=
sinhqx

coshqx
, sechqx=

1

coshqx
,

(24)

where q is a real parameter and q>0.
For the scattering states, E>0 and k>0. In the 3D

case, the boundary conditions of the scattering states of
a short-range potential are

F (r)
r→0−→0, and F (r)

r→∞−→ 2sin(kr+δl−lπ/2). (25a)

Using Refs. [51, 69], we have

F (r)
r→0−→0, and F (r)

r→∞−→ 2sin

[

kr+δJD−2

−π

(

JD−2+
D−3

2

)

/

2

]

, (25b)

to ensure that the radial wave functions of the scattering
states for a short-range potential are also normalized on
the k/2π scale, where δJN−2

represents the phase shift.
Now, according to the asymptotic behavior of the ra-

dial wave functions of the continuous states at r→0, we
take the wave function in the form of

F (s)=s
[1+

√
1+4C0qb1]

4 (1−s)−ik/2αf(s). (26)

Substituting Eq. (26) into Eq. (22), we can obtain the
following second-order differential equation as

s(1−s)
d2f(s)

ds2
+

[

[

2+
√

1+4C0qb1

]

2

−
(

[

4+
√

1+4C0qb1

]

2
− ik

2α

)

s

]

df(s)

ds

+
1

4

[

b3Ṽ0−4C0qb1+b2b3

+
ik

α

([

2+
√

1+4C0qb1

])

]

f(s)=0, (27)

which is the hyper-geometric differential equation [70–
72]. Thus, the analytical solution at s = 0(r → 0)is the
hyper-geometric function

f(s)=2F1(a,b;c;s). (28)

And the parameters are

a =





[

2+
√

1+4C0qb1−
√

1+4b3Ṽ0

]

2



/2−ik/2α,

b =





[

2+
√

1+4C0qb1+
√

1+4b3Ṽ0

]

2



/2−ik/2α,

c =

[

2+
√

1+4C0qb1

]

2
. (29)

From the above equations, we have

c−a−b = ik/α=(a+b−c)∗,

c−a =





[

2+
√

1+4C0qb1+
√

1+4b3Ṽ0

]

2



/2+ik/α=b∗,

c−b =





[

2+
√

1+4C0qb1−
√

1+4b3Ṽ0

]

2



/2+ik/α=a∗,

(30)

where k=α
√

b2b3.
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Therefore, the radial wave function of the scattering
state is

Fnrκ(s)=AnrJD−2
s
[1+

√
1+4C0qb1]

4 (1−s)−i k
2α

2F1 (a,b;c;s),
(31)

where form s=tanh2(αr). We now study the asymptotic
form of the above expression for large r, and calculate
the normalization constant AnrJD−2

of the radial wave
function and phase shift δJD−2

. By using the transfor-
mation formulas to the hyper-geometric function [63–65]

2F1

(

a,b;c;tanh2(αr)
)

=
Γ (c)Γ (c−a−b)

Γ (c−a)Γ (c−b)
2F1

(

a,b;a+b−c+1;1−tanh2(αr)
)

+(1−tanh2(αr))c−a−b Γ (c)Γ (a+b−c)

Γ (a)Γ (b)
2F1

(

c−a,c−b;c−a−b+1;1−tanh2(αr)
)

. (32)

By using the

1−tanh2(αr)=1/cosh2(αr)=4/(eαr+e−αr)
2 r→∞−→4e−2αr, (33)

we have
[

1−tanh2(αr)
]−ik/2α

=
r→∞−→ 2−ik/αe−ikα, and

[

1−tanh2(αr)
]c−a−b

=
r→∞−→ 22ik/αe−2ikα. (34)

Substituting Eqs. (32)–(34) into Eq. (31) and using 2F1(a,b;c;1)=1, we have

F (s)=NkJD−2

[

tanh2(αr)
]

[1+
√

1+4C0qb1]
4

[

1−tanh2(αr)
]−i k

2α

2
F1

(

a,b;c;tanh2(αr)
)

r→∞−→NkJD−2 22
−i k

α eikrΓ (c)

[

Γ (c−a−b)

Γ (c−a)Γ (c−b)
+22i k

α e−2ikr Γ (a+b−c)

Γ (a)Γ (b)

]

r→∞−→NkJD−2
Γ (c)

[

Γ (c−a−b)

Γ (c−a)Γ (c−b)
2−i k

α eikr+2i k
α e−ikr

(

Γ (a+b−c)

Γ (a)Γ (b)

)∗]

. (35)

If we write
Γ (c−a−b)

Γ (c−a)Γ (c−b)
=

∣

∣

∣

∣

Γ (c−a−b)

Γ (c−a)Γ (c−b)

∣

∣

∣

∣

eiδ, (36)

then
(

Γ (c−a−b)

Γ (c−a)Γ (c−b)

)∗

=

∣

∣

∣

∣

Γ (c−a−b)

Γ (c−a)Γ (c−b)

∣

∣

∣

∣

e−iδ, (37)

where δ is a real number. Using the above equation, Eq. (35) becomes

F (s)
r→∞−→NkJD−2

Γ (c)

∣

∣

∣

∣

Γ (c−a−b)

Γ (c−a)Γ (c−b)

∣

∣

∣

∣

[

ei(kr+δ−kln2/α)+e−i(kr+δ−kln2/α)
]

r→∞−→ 2NkJD−2
Γ (c)

∣

∣

∣

∣

Γ (c−a−b)

Γ (c−a)Γ (c−b)

∣

∣

∣

∣

cos(kr+δ−kln2/α)

r→∞−→ 2NkJD−2
Γ (c)

∣

∣

∣

∣

Γ (c−a−b)

Γ (c−a)Γ (c−b)

∣

∣

∣

∣

sin[kr+δ−kln2/α−π[JN−2+(N−3)/2]/2+π[JN−2+(N−1)/2]/2]. (38)

Comparing Eq. (25b) with Eq. (38), we obtain the normalization constant of the scattering state as

Nkl =
1

Γ (c)

∣

∣

∣

∣

Γ (c−a)Γ (c−b)

Γ (c−a)Γ (c−b)

∣

∣

∣

∣

=

∣

∣

∣Γ
([

2+
√

1+4C0qb1−
√

1+4b3Ṽ0

]

/4+ik/2α
)∣

∣

∣

Γ

(

[

2+
√

1+4C0qb1

]

2

)

×

∣

∣

∣

∣

∣

∣

Γ
[(

2+
√

1+4C0qb1+
√

1+4b3Ṽ0

)

/4+ik/2α
]

Γ (ik/α)

∣

∣

∣

∣

∣

∣

. (39)
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Substituting Eq. (39) into Eq. (31), we obtain the normalized wave functions of the continuous states with the
modified Pöschl-Teller potential in the D-dimension on the k/2π scale as

Fnrκ(s) =
1

Γ

(

[

2+
√

1+4C0qb1

]

2

)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Γ









[

2+
√

1+4C0qb1+
√

1+4b3Ṽ0

]

2



/2+i
k

2α



Γ









[

2+
√

1+4C0qb1−
√

1+4b3Ṽ0

]

2



/2+i
k

2α





Γ (ik/α)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×
[

tanh2(αr)
]

[1+
√

1+4C0qb1]
4

[

1−tanh2(αr)
]−i k

2α
2F1

(

a,b;c;tanh2(αr)
)

. (40)

And phase shifts

δJD−2
= π

[JD−2+(D−1)/2]

2
−k ln2/α+argΓ (c−a−b)−argΓ (c−a)−argΓ (c−b)

= π

[JD−2+(D−1)/2]

2
−k ln2/α+argΓ (c−a−b)−argΓ (b)−argΓ (a)

= π

[JD−2+(D−1)/2]

2
−k ln2/α+argΓ (ik/α)−argΓ





[

2+
√

1+4C0qb1−
√

1+4b3Ṽ0

]

4
−ik/2α





+argΓ





[

2+
√

1+4C0qb1+
√

1+4b3Ṽ0

]

4
−ik/2α



. (41)

Now, by using the Nikiforov-Uvarov (NU) method
[54] and Eq. (22), we obtain the energy eigenvalues equa-
tion as follows

−1

2

[

(−4C0q+1)b1−b3Ṽ0−b2b3

]

−1

2

√

−b2b3 [1+4(−4C0q+1)b1]

−1

2

[

2
√

−b2b3+
√

1+4(−4C0q+1)b1

]

−1

2

= nr

(

4+2
√

−b2b3+
√

1+4(−4C0q+1)b1

)

+2nr(nr−1),

(42)

where b1, b2, b3 and Ṽ0 are given in formula (23).

4 Conclusions

In this work, we obtain approximate analytical solu-
tions of the scattering states for the modified Pöschl-
Teller and Coulomb-like tensor potential in the D-
dimensional state in the position-dependent mass state
under spin symmetry. The energy levels equation is ob-
tained using the NU method. The phase shift is given in
Eq. (41), and the normalized wave function expressed
in terms of the hyper-geometric series of the scattering
state on the k/2π scale is given in Eq. (40).

We would like to thank the kind referee for positive

suggestions, which have improved the manuscript.
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