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Comprehensive analysis of e+e−
→γηc(2S) *
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Abstract: We discuss the production of ηc(2S) through the process e+e−→γηc(2S), where the leading contribution

originates from 1-loop electroweak corrections. Adopting some reasonable light-cone distribution amplitudes, we

analyze the cross section of this process. As the electron-positron center of mass energy
√

s=3770 MeV, the typical

production cross section of this process is about 1 fb.
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1 Introduction

From an experimental and theoretical point of
view, the charmonium draws great attention because
it provides an ideal laboratory in which to test pre-
dictions from the perturbative- and nonperturbative-
chromodynamics. Since ηc(2S) is the first radially ex-
cited S-wave spin singlet state in the charmonium sys-
tem, it is very interesting to study its properties in detail
and many works have been done recently.

For example, the authors of Ref. [1] estimated the
decay rates of ηc(2S)→γγ, by taking into account both
relativistic and QCD radiative corrections. Similarly, in
Ref. [2], the author presented a relativistic calculation
of two-photon decays for heavy and light mesons in the
framework of the Salpeter equation for quark-antiquark
states. In addition, observation of ηc(2S) production
in γγ fusion at CLEO was discribed in Ref. [3]. The
authors of Ref. [4] presented the complexion of pseu-
doscalar mesons, and gave the mass and decay constant
of ηc(2S), The authors of Ref. [5] also presented the de-
cay constants and the radiative decay widths of ηb(nS)
and ηc(nS) which are computed within a semirelativis-
tic quark model, using a potential found through the
AdS/QCD correspondence. In Ref. [6], the authors ne-
glected the mass of the light quark mass of the light
meson and obtained an improved analytical expression
for the rates of J/ψ→ηγ,η′γ.

However, it is very difficult to detect ηc(2S) through
the process ψ(2S)→γηc(2S), and the CLEO Collabora-
tion set an upper bound on the branch ratio B(ψ(2S)→
γηc(2S)) < 0.2% at 90% confidence level (C.L.) as the

mass of ηc(2S) ∼ 3594 MeV. Since the relevant signal
is overwhelmed by that from the background processes
ψ(2S)→γX, they did not obtain evidence for the decay
process ψ(2S)→γηc(2S),ηc(2S)→π+π−ηc(1S) [7]. So
in this work, we discuss the production of ηc(2S) through
the process e+e−→γηc(2S) which may be a new channel
to product ηc(2S).

The Okubo-Zweig-Iizuka (OZI) rule implies that the
cross section or the branch ratio of the relevant processes
is suppressed when there is no quark line connecting the
initial and final hadron states. The branch ratio for the
OZI-forbidden radiative decays in perturbative QCD has
been investigated by Körner et al. [8], where the 4-point
and 5-point loop functions are approximated in a weak-
binding approach for both heavy and light mesons, that
is the quark q and anti-quark q̄ in mesons are all assumed
to have the same momentum and satisfy the on-mass-
shell conditions. Here, we abandon the weak-binding
approach in this approximation to get the non-zero cross
section, namely, we consider the relative momentum be-
tween q and q̄ and not let them be on the mass shell.

Since three momenta of the final meson are larger
than ΛQCD, we adopt some typical light-cone wavefunc-
tions [9–11] to evaluate the hadronic matrix elements
which contain the effects from non-perturbative QCD.
In principle, there is contribution to the cross section of
e+e− → γηc(2S) from the tree level Feynman diagrams
drawn in Fig. 1, which were calculated based on non-
relativistic QCD a few years ago [12–14]. We also dis-
cuss the contribution to the cross section of the process
e+e−→γηc(2S) from those one loop Feynman diagrams
drawn in Fig. 2.
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In concrete calculation, the amplitudes correspond-
ing to the one loop diagrams drawn in Fig. 2 are some
simplified linear combinations of the Lorentz-covariant
operators where those corresponding coefficients are re-
duced to standard scalar Passarino-Veltman integrals.

Fig. 1. The possible tree level Feynman diagrams
contributing to the process e+e− → γηc(2S),
where the gray bulb denotes the meson.

Fig. 2. The one loop Feynman diagrams contribute
to the process e+e− → γηc(2S), where the gray
bulb denotes the meson.

This paper is composed of the following sections. In
section 2, we present the amplitudes of the diagrams

drawn in Fig. 2 as the linear combinations of the Lorentz-
covariant operators, and verify the contributions from
those one loop diagrams which are infrared-safe when
we consider the end-point behaviors of the wave func-
tions. Section 3 is devoted to the numerical analysis and
discussion. In section 4, we give our conclusion.

2 The leading contributions from one
loop diagrams

As mentioned above, the leading contributions to the
cross section of e+e−→γηc(2S) originate from those one
loop diagrams drawn in Fig. 2 where the charm and anti-
charm in the final state compose the meson ηc(2S). In
order to obtain the corrections from these diagrams prop-
erly, we employ some model-dependent wavefunctions to
evaluate the relevant hadronic matrix elements. For the
bound state ηc(2S), the matrix element of nonlocal op-
erators sandwiched between the vacuum and the meson
could be written as:

〈η|qa
α(0)qb

β(x)|0〉= δab

4Nc

{

〈η|q(0)q(x)|0〉

+γ5〈η|q(0)γ5q(x)|0〉+γµ〈η|q(0)γµq(x)|0〉

−γµγ5〈η|q(0)γµγ5q(x)|0〉

+
1

2
σµνγ5〈η|q(0)σµνγ5q(x)|0〉

}

βα

. (1)

So the leading-twist distribution amplitude could be
written as

〈η(p′)|q(0)γµγ5q(x)|0〉=−ifηp
′

∫1

0

dueiup′·xφ(u), (2)

in the momentum representation which is [9, 15]

〈η(p′)|qa
αqb

β|0〉=i
δabfη

4Nc

∫1

0

du{6p0γ5φ(u)}βα, (3)

where q, q are the spinors of the valence anti-quark and
quark in the meson, a, b=1, 2, ···, Nc are the color in-
dices, p0 is the momentum of the meson, fη denotes the
decay constant of ηc(2S), respectively. In addition, φ(u)
is the light-cone wavefunction of the meson, and denotes
the leading-twist distribution of the momenta of valence
quarks in the bound state. The momenta of valence
quarks are p(q)=up0, p(q)=(1−u)p0 or p(q)=(1−u)p0,
p(q)=up0. Certainly, the light-cone wavefunction of the
meson satisfies the normalization condition∫1

0

duφ(u)=1. (4)

Here we adopt three typical light-cone wavefunctions of
the meson [9, 15–19] to evaluate the hadronic matrix el-
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ements:

φ1(u)=6u(1−u),

φ2(u)=30u2(1−u)2,

φ3(u)=
15

2
(1−2u)2[1−(1−2u)2].

(5)

For example, the amplitude of Fig. 2(a) at quark level
can be written as

Ma =
e5Q2

q

(p1−q)2−m2
e

∫
d4k

(2π)4

×uq(p3)γ
ρ(6k−6p4+mq)γ

µυq(p4)

×υe(p2)γµ(6k−6p2+me)γρ(6p1−6q+me) 6ε∗ue(p1)

k2(k−p3−p4)2((k−p2)2−m2
e)((k−p4)2−m2

c)
,

(6)

with εν denoting the photon polarization vector, Qq is
the quark electric charge, and me and mc are the masses
of the electron and the quark, respectively.

Applying Eq. (1), the hadronic matrix elements from
this diagram is given as

〈ηγ|Ma|e+e−〉

=
ie5Q2

qfηδab

4Nc((p1−q)2−m2
e)

×
∫

d4k

(2π)4

∫1

0

duTr[6p0γ5φ(u)γρ(6k−6p4+mc)γ
λ]

×υe(p2)γµ(6k−6p2+me)γρ(6p1−6q+me) 6ε∗ue(p1)

k2(k−p3−p4)2((k−p2)2−m2
e)((k−p4)2−m2

c)
. (7)

This hadronic matrix elements can be expressed as the
linear combinations of some Lorentz-covariant tensors
constructed by the metric tensor gµν and a linearly in-
dependent set of external momenta [20]:

〈ηγ|Ma|e+e−〉

= − e5π2fηQ
2
q

Nc((p1−q)2−m2
e)
×

∫1

0

duφ(u)ve(p2)(A0 6ε(q)γ5

+A1p1·ε(q)γ5+A2p2·ε(q)γ5+A3(p1·ε(q) 6p2γ5

+p2·ε(q)(6q−6p1)γ5+iεµνρσγµ(pν
1p

ρ
2+pν

2q
ρ)εσ(q))

+A4εµνρσσµνpρ
2ε

σ(q)

+A5εµνρσσµν(p1−q)ρεσ(q))ue(p1), (8)

with εµνρσ denoting the totally antisymmetric tensor,

and the form factors Ai (i=0, 1, ···, 5) are defined as

A0 = 6D00(m
2
e+p1·p2−2p1·q−p2·q)

+2C2

(

m4
e−2p1·qm2

e−(p1·p2−p2·q)2
)

,

A1 = −2me

(

C2m
2
e+3D00−C1p1·p2+C1p2·q

)

,

A2 = 2me

(

C1m
2
e+3D00−C2p1·p2−2C1p1·q

+C2p2·q
)

,

A3 = 2
(

C1m
2
e+3D00−C2p1·p2+2C3p1·q

+C2p2·q
)

,

A4 = me

(

C1m
2
e+3D00−C2p1·p2−2C1p1·q

+C2p2·q
)

,

A5 = me

(

C2m
2
e+3D00−C1p1·p2+C1p2·q

)

, (9)

where

C1 = D0+D1+D13+D2+D23+2D3+D33

−(u−1)(D1+D11+D12+D13),

C2 = D12+D2+D22+D23

+u(D1+D11+D12+D13),

C3 = −D13−D23−D3−D33

+(u−1)(D1+D11+D12+D13), (10)

with

D{i, ij} = D{i, ij}((p2−p4)
2,m2

c,m
2
η,(p0−p2)

2,

m2
e ,m

2
c ,m

2
e ,m

2
c ,0,0), (11)

being the 4-point standard scalar Passarino-Veltman in-
tegrals [20], and they could be calculated by using ‘Loop-
Tools’. The hadronic matrix elements in Eq. (6) are
infrared safe since we adopt the light-cone distribution
amplitudes φi(u) (i=1, 2, 3). In other words, we do not
need to worry about the infrared problem here [15]. Sim-
ilarly, we can derive the correction to matrix elements
from other diagrams, and the hadronic matrix elements
of the 5-point figure can also be expressed as the linear
combinations of some Lorentz-covariant tensors [21].

Using the hadronic matrix elements derived above,
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we write the cross section of e+e−→γηc(2S) as

σ=
1

16πs(s−4m2
e)

∫
|M|2dt, (12)

with s=(p1+p2)
2, t=(p1−q)2=(p2−p0)

2 are the Mandel-
stam variables.

In addition, we also consider the twist-3 distribution
amplitudes defined in the matrix elements [11, 22]

〈η(p′)|q(0)iγ5q(x)|0〉 =
fηm

2
η

2mq

∫1

0

dueiup′·xφη
p(u),

〈η(p′)|q(0)σµνγ5q(x)|0〉 = − i

6

fηm
2
η

2mq

[

1−
(

2mq

mη

)2
]

×(p′
µxν−p′

νxµ)2mq

∫1

0

dueiup′·x

×φη
σ(u). (13)

They can be expanded in terms of Gegenbauer polyno-
mials:

φp(u)=1+aC1/2
2 (u)+bC1/2

4 (u)+···

φσ(u)=6u(1−u)(1+dC3/2
2 (u)+···),

(14)

where the coefficients a,b,d can be found in Refs. [11, 22].

3 Numerical analysis

Using the above preparation, we present the finally
numerical results here. In our numerical analysis, we
adopt the decay constant of ηc(2S) fη=266 MeV [5], the
mass of ηc(2S) Mη =3637 MeV, the charm quark mass
Mc=1270 MeV, and the electron mass Me=0.511 MeV,
respectively [23]. The three possible distribution am-
plitudes φ1(u), φ2(u) and φ3(u) are already given in

Eq. (14).
We give the theoretical predictions on the corre-

sponding cross section of e+e−→γηc(2S) at the electron-
positron center of mass energy

√
s=3770 MeV for three

distribution amplitudes in Table 1. We can see that
the cross section from the distribution amplitude φ3 is
about five times that from the distribution amplitude
φ1, and ten times that from the distribution amplitude
φ2 quantitatively, which are similar to the case discussed
in [15, 18]. In addition, we also consider the higher
twist and get the cross section at twist-3, which is about
0.923 fb. So we could see that the effects are small for
the twist-3 case.

Table 1. The cross section e+e− → γηc(2S) with
three different distribution amplitudes φ(u) at
√

s=3770 MeV.

σ(φ1)/b σ(φ2)/b σ(φ3)/b

6.15E−16 2.53E−16 3.66E−15

The cross section of this process is typically about
10−15b, which maybe implies that we can study the prop-
erties of ηc(2S) through this window.

4 Conclusion

In this work, we investigate the production of ηc(2S)
through the process e+e−→γηc(2S). Using the popular
light-cone wave function method to evaluate the hadronic
matrix elements, we find the theoretical prediction on
the corresponding cross section is typically 10−15b. This
result may imply that we can study the properties of
ηc(2S) through this window. In other words, the cross
section with this order is large enough to be detected
in future, and can be used to product the bound state
ηc(2S) at electron-positron colliders.
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