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Abstract: We apply the derivative coupling model with ZM and ZM3 parameters to investigate the longitudinal

response function in quasielastic electron scattering in the relativistic random phase approximation. The non-spectral

method is chosen to describe the nucleon Green’s function in a finite nucleus. Some remarks have been made in

conclusion.
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1 Introduction

Relativistic mean field (RMF) theory based on nu-
cleons and mesons as the effective degrees of freedom is
successful in describing nuclear matter and finite nuclei
[1–5]. It is well known that the original Walecka model
based on RMF theory gives a value of nuclear-matter in-
compressibility at the saturation density that is too large.
Many improved ideas have been developed, such as those
including nonlinear meson couplings or with density de-
pendent nucleon-meson couplings, etc. In these models,
an approach with derivative scalar couplings introduced
by Zimányi and Moszkowski [6], i.e., the so-called ZM
model and a modified version labeled by ZM3 has been
applied to study the properties of nuclear matter, finite
nuclei and neutron stars and gives reasonable results [7–
10].

The relativistic random phase approximation (RPA)
is widely used in studying the many-body effects of the
nuclear system (see, e.g., Refs. [11–14] and references
therein). In this work, we use the non-spectral method
in which the contributions of the continuum spectrum
to nuclear excitations are described by the single par-
ticle Green’s function [15, 16]. The advantages of this
method are that it is not only unnecessary to discretize
the single particle states in the continuum but also fully
consistent within the RMF theory in the sense that the
wave function of the nuclear ground state, the meson
fields, and the nucleon Green’s function are obtained in

the same effective Lagrangian.
Quasielastic electron scattering is a useful approach

to probe the properties of nucleons in nuclei and pro-
vides a feasible way to examine in detail the theoretical
nuclear models. In this paper, we exploit the derivative
coupling model in terms of the ZM and ZM3 versions to
investigate the quasielastic electron scattering on nuclei,
focusing on its longitudinal response function and use
the RPA to describe the correlation between nucleons in
nuclei. The rest of this paper is organized as follows. In
Section 2, a brief review of the models and the basic for-
mulae are given. In Section 3, we present our calculated
results and give some discussions. Finally, we summarize
our work in Section 4.

2 The formulae

The double-differential electron scattering cross-
section is expressed as

d2σ

dΩdE′

= σM

{

(

q2

|q|2

)2

SL(q)+

[

−q2

2|q|2
+tan2

(

θ

2

)]

ST(q)

}

, (1)

where σM is the Mott cross-section, q=(ω,|q|) is the four-
momentum transfer of the electron to a target nucleus,
and SL and ST are the longitudinal and transverse re-
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sponse functions, respectively. The electromagnetic cur-
rent operator is defined as

Jµ(q) =

∫
d3xeiq·xψ̄(x)

(

F1(q
2)γµτp.

+F2(q
2)
κτ

2M
iσµνqν

)

ψ(x), (2)

where ψ̄ and ψ are the nucleon field operators, M is the

nucleon bare mass, and σµν≡
1

2
i[γµ,γν ]. The proton and

neutron anomalous magnetic moments are κp=1.793 and
κn=−1.913. The Dirac and Pauli form factors for nucle-
ons are given by [17]
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(3)

The longitudinal response function SL is proportional to
the imaginary part of the longitudinal polarization func-
tion in momentum space:

SL(q)=−
1

π
ImΠL(q,q;ω)=−

1

π
ImΠj0j0(q,q;ω), (4)

where ‘j0’ stands for the time component of Eq. (2).
To derive the longitudinal polarization function ΠL

in a finite nucleus, it is firstly desirable to know the wave
function of a nucleon in the ground state of finite nuclei.
We then describe the finite nuclei in the derivative cou-
pling model in which nucleons interact with each other
via the exchange of isoscalar-scalar σ, isoscalar-vector
ω, isovector-vector ρ mesons, and photons. The corre-
sponding Lagrangian density is given by

L= ψ̄
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µν , (5)

where ψ stands for the nucleon field, Aµ is the pho-
ton field, σ, ωµ, and ~ρµ are for σ-, ω-, and ρ- meson
field. Here ωµν = ∂µων−∂νωµ, ~ρµν = ∂µ~ρν −∂ν ~ρµ, and

Aµν =∂µAν−∂νAµ. The effective nucleon mass is defined
as M∗ =M−Γ ∗

σ
σ. For ZM and ZM3 models, the effec-

tive couplings between mesons and nucleons are listed in
Table 1, with the parameter m∗ defined as

m∗=
1

1+Γσσ/M
. (6)

In the spirit of the RMF theory, the field operators of
the mesons and the photon are replaced by their expec-
tation values, which are classical fields. Then the Dirac
equations for nucleons are derived from Eq. (5) by the
variational principle to give

(Eαγ0+i~γ·~∇−M∗(r)−γ0V (r))ψα=0, (7)

with the vector potential V defined as

V (r)=Γ ∗
ω
ω0(r)+

Γ ∗
ρ

2
τ3ρ30(r)+e

1+τ3
2

A0(r). (8)

Then, coupled with the meson field equations, Eq. (7)
can be solved for the ground state of finite nuclei by an
iterative procedure. The detailed formulae for ZM and
ZM3 models in finite nuclei are given in Ref. [8]. In the
spherical nuclei, the wave function of a nucleon can be
written as

ψα=





i[ψ1
l(1)j

(r)/r]Yl(1) jm(Ω)

−[ψ2
l(2)j

(r)/r]Yl(2)jm(Ω)



, (9)

where l(2)=2j−l(1), Yl(1)jm is a spin spherical harmonic, α
stands for a set of quantum numbers, such as the radial
quantum number, etc. We should note that the nucleon
wave function has a specific energy eigenvalue Eα.

Table 1. Effective couplings between mesons and
nucleons in ZM and ZM3 models, with Γσ, Γω,
and Γρ given in Ref. [8].

model Γ
∗
σ Γ

∗
ω Γ

∗
ρ

ZM m
∗
Γσ Γω Γρ

ZM3 m
∗
Γσ m

∗
Γω m

∗
Γρ

Next we should know the nucleon Green’s function in
a finite nucleus. It can be obtained from the 4×4 matrix
equations given as

(ωγ0+i~γ·~∇−M∗(r)−γ0V (r))G(x,y;ω)=δ3(x−y), (10)

where M∗(r) and V (r) are the same as those in Eq. (7).
Note that ω is not energy eigenvalue Eα any more, it can
be any energy value. With the form of the nucleon wave
function in Eq. (9), the Green’s function can be written
as

G(x,y;ω)=
1

xy

∑

ljm





g11
lj (x,y;ω)Yl(1)jm(Ωx)Y†

l(1)jm
(Ωy) ig12

lj (x,y;ω)Yl(1)jm(Ωx)Y†

l(2)jm
(Ωy)

ig21
lj (x,y;ω)Yl(2)jm(Ωx)Y†

l(1)jm
(Ωy) −g22

lj (x,y;ω)Yl(2)jm(Ωx)Y†

l(2)jm
(Ωy)



, (11)
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where x and y stand for the radial distance for x and y.
Then inserting this form in Eq. (10) yields

(

−M∗
N−V+ω d/dx−κ/x

d/dx+κ/x −M∗
N+V−ω

)(

g11
lj g12

lj

g21
lj g22

lj

)

= δ(x−y)

(

1 0

0 1

)

, (12)

where gαβ
lj can be solved as proper combinations of the

regular and irregular solutions of Eq. (7) with Eα re-
placed by ω. The regular solutions ψu are normalizable
at the origin, while the irregular ones ψv are at infinity.
It can be proven that ψu/r are power functions in radius
at the origin and ψv/r approach asymptotically spherical
Hankel functions at infinity. Then gαβ

lj can be given in
terms of ψu and ψv by

gαβ
lj (x,y;ω)=

1

∆lj

{

ψα

u;l(α)j
(x)ψβ

v;l(β)j
(y), x6y,

ψα

v;l(α)j
(x)ψβ

u;l(β)j
(y), x>y,

(13)

with the Wronskian determinant ∆lj = ψ1
u;l(1)j

ψ2
v;l(2)j

−

ψ1
v;l(1)j

ψ2
u;l(2)j

, which is constant in radius.
The longitudinal polarization in momentum space is

related to that in coordinate space by Fourier transfor-
mation:

ΠL(q,p;ω)=

∫
d3xe−iq·x

∫
d3ye−ip·yΠL(x,y;ω). (14)

The relation of the polarization function and nucleon
Green’s function is given by

Πab(x,y;ω) =
∑

h

{Ψ̄h(x)ΓaG(x,y;Eh+ω)ΓbΨh(y)

+[Ψ̄h(x)ΓaG(x,y;Eh−ω)ΓbΨh(y)]∗}. (15)

Then, by solving Dyson’s equation, the RPA correlations
between nucleons can be included in the polarization
function which is given by

ΠRPA
L (q,q;ω)

= ΠL(q,q;ω)+

∫
d3k

(2π)3
Π0a(q,k;ω)Dab(k,ω)ΠRPA

b0 (k,q;ω),

(16)

where Dab are the free meson propagators that can be
seen in any book on quantum field theory. Using the po-
larization functions of Eqs. (14) and (16), we can obtain
the longitudinal response function SL in the Hartree and
RPA approximation, respectively.

For calculating the polarization function Πab, the
meson-nucleon vertices need to be known (i.e., Γa(b) in
Eq. (15)). In the Lagrangian density of the derivative
coupling model, we note that the coupling parameters

are

ZM: Γσ→m∗Γσ,Γω,ρ→Γω,ρ,

ZM3: Γσ→m∗Γσ,Γω,ρ→m∗Γω,ρ. (17)

However, if we directly use these vertices, the calculated
results will be incorrect, as will be discussed in Section 3.
In fact, we can expand Eq. (6) in Γσσ/M to give

m∗=1+

∞
∑

i=1

(−1)i

(

Γσσ

M

)i

, (18)

where the σ-field is replaced by its classical expectation
value in the spirit of the RMF approximation. In the
RPA, one σ is absorbed in the σ meson propagator, so
the σ terms drop one power. Moreover, we note that
every σ term can participate in the interaction of nucle-
ons. Therefore, the σ-meson-nucleon vertex in Eq. (17)
should be modified accordingly by (σdm∗/dσ+m∗)Γσ,
i.e., the vertices in Eq. (15) should be replaced by

ZM and ZM3:Γσ→m∗2Γσ, (19)

and other meson-nucleon vertices are the same as in
Eq. (17). These forms of vertices have also been used
in Ref. [18], which is devoted to the study of the propa-
gation of mesons in a medium.

3 Results and discussion

In this work, we will discuss the effects of the different
forms of vertices of Eqs. (17) and (19) on the longitudinal
response function. In comparison with the non-spectral
method, the calculations of local-density approximation
(LDA) for finite nuclei, which treat the response func-
tion as a proportion of the space integral of the imagi-
nary part of the polarization function in infinity nuclear
matter [19], are also presented below.

Figure 1 illustrates the calculated results of the lon-
gitudinal response function SL versus the transferred en-
ergy at |q|=400 MeV for 12C in the derivative coupling
model with the the so-called ZM parameters. The empir-
ical data are also shown for comparison. The left panel
shows the result in the non-spectral representation. The
right panel plots the LDA results. The dashed curves re-
fer to the result without considering the effects of RPA
correlation between nucleons (i.e., the so-called Hartree
approximation). The solid and dotted curves display the
cases in the RPA, but the vertices used in them cor-
respond to Eqs. (19) and (17), respectively. Firstly, we
compare the RPA results with two different forms of ver-
tices. It is observed that, whatever the case, the peak of
SL is reduced compared with the Hartree approximation
when the RPA correlations between nucleons are consid-
ered, that has been pointed out in the earlier literatures
within Walecka models [21–23]. However, in both pan-
els, we note that the curve labeled by RPA[Y] shows
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a divergence at low energy transfer. It indicates that
the case of RPA in which the vertices of Eq. (17) are
used is unrealistic in comparison with that with the ver-
tices of Eq. (19). Furthermore, comparing the two pan-
els in Fig. 1, we can see that the calculated peak values
in the non-spectral representation are lower and wider

than those in the LDA, and the peaks in the left panel
all move to higher transferred energy. The reason is that
the non-spectral calculation considers the effects of the
nuclear binding energy in nuclei more completely than
the LDA method. All these make the non-spectral RPA
calculation somewhat closer to the empirical data.

Fig. 1. Longitudinal response function versus transferred energy for 12C in the ZM model. The left panel corresponds
to the calculated results with the non-spectral method, and the right panel refers to the case in local-density
approximation. Experimental data are taken from Ref. [20].

Fig. 2. Same as Fig. 1, but at |q|=410 MeV for 40Ca.
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Fig. 3. Same as Fig. 1, but in the ZM3 model.

Fig. 4. Same as Fig. 2, but in the ZM3 model.

Figure 2 is the same as Fig. 1 but at |q|=410 MeV
for 40Ca. We see that in the right panel the curve with
RPA[Y] in the LDA shows a divergence at low energy
transfer, and in the left panel the curve with RPA[Y] in
the non-spectral representation has a strange bump at
a similar position. Not only that, it is surprisingly seen
from the left panel that the curve with RPA also presents

an unrealistic bump.
Actually, besides in the left panel in Fig. 2, it can

be seen that the curves labeled by RPA in Figs. 1 and
2 all present a bump, although insignificantly, and do
not reproduce the empirical data well. Therefore, due to
the similarity to the phenomenon found in the nonlinear
Walecka model in our earlier work [19], we conclude in
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this paper that the derivative coupling model with the
the so-called ZM parameters is not so good to use in
investigating quasielastic electron scattering. However,
with the ZM3 parameters, in Figs. 3 and 4, it is seen
that although the curves with RPA[Y] still present an
unrealistic bump, those labeled by RPA are close to the
empirical data and there is no unrealistic phenomenon in
them, especially for the non-spectral calculations plotted
in the left panels in Figs. 3 and 4.

4 Summary

In summary, we apply the derivative coupling model
with the ZM and ZM3 parameters to study the quasielas-
tic electron scattering and use the RPA to describe the
correlation between nucleons in nuclei. In finite nuclei,
the calculations in terms of the non-spectral method with
the single particle Green’s function technique are com-
pared with those in the LDA.

From the present work, three conclusions may be
drawn, as follows.

1) For studying quasielastic electron scattering in fi-
nite nuclei, two approaches are adopted, i.e., the non-
spectral method and the LDA (in fact, there is the third
approach, the so-called spectral method [24], which is
not considered in the present paper), but the former is
somewhat more precise than the latter. It is due to the
fact that in a finite nucleus, the non-spectral method de-
scribes the polarization or nucleon Green’s function more
exactly.

2) The vertex terms in the Lagrangian density should
not be simply adopted to use in the RPA calculation, but
need some corresponding self-consistent modifications,
e.g., in this paper, we should use Eq. (19) rather than
(17) as the vertices in the RPA calculation.

3) The ZM3 model is more suitable for studying the
quasielastic electron scattering than the original ZM ver-
sion of the derivative coupling model.
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