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Two-body Spinless Salpeter equation for the Woods-Saxon potential
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Abstract: The two-body Spinless Salpeter equation for the Woods-Saxon potential is solved by using the super-

symmetry quantum mechanics (SUSYQM). In our calculations, we have applied an approximation to the centrifugal

barrier. Energy eigenvalues and the corresponding eigenfunctions are computed for various values of quantum num-

bers n, l.
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1 Introduction

The Bethe-Salpeter equation (BSE) [1–6] can be re-
duced into the Spinless Salpeter equation (SSE) by ne-
glecting the spin degrees of freedom and applying some
approximations [7, 8]. The so-called SSE has two main
merits: it generalizes the Schrödinger equation into the
relativistic regime and is less complicated than the BSE.
Although we have just stated that the SSE is simpler
than the BSE, it is more complicated than other wave
equations of quantum mechanics, and in particular the
Schrödinger equation itself, due to its nonlocal form (we
will soon see that the Hamiltonian appears under an in-
verse square term). Until now, interesting ideas of non-
relativistic quantum mechanics such as operator inequal-
ities, envelope theory and the variational technique have
been brilliantly applied to the problem [9–13].

On the other hand, the Woods–Saxon potential is a
successful short-range interaction in the potential model
of nuclear physics and has had motivating predictions for
the nuclear shell model and distribution of nuclear densi-
ties [14–25]. It has also been studied in other fields, such
as atomic, condensed matter and chemical physics [26].
We first review the two-body SSE. Then, by considering
a Pekeris-type approximation as well as some transfor-
mations, we bring the problem into a form which can be
solved by the analytical SUSYQM technique [27–29].

2 The two-body-Hamiltonian

The SSE for two interacting particles in the center of

mass system appears as [30, 31]

[
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On the other hand,
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with
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(3b)

From Eqs. (1) to (3), we have [30, 31]
[
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W 2
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]

ψnl(r)=0,

Wnl(r)=V (r)−Enl,

m̃=η3/µ2=(m1m2µ)/(m1m2−3µ2).

(4)

Here, we have studied the Woods-Saxon potential

V (r)=− V0

1+exp

(

r−R0

a

) ,

where V0 is the potential depth, the parameters a and
R0 are the thickness of surface and the width of the po-
tential, respectively.

Substituting the potential into Eq. (4), we get
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ψn,l(r)=0. (5)

A change of variable of the form [32]
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R0

, α=
R0

a
. (6)

Brings Eq. (5) of the form
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ψn,l(x)=0. (7)

The latter, obviously, cannot be exactly solved.
Therefore, using an approximation is inevitable.

3 A Pekeris-type approximation and the

SUSYQM technique

Here, for the centrifugal term barrier we consider the
approximation [32]
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This brings Eq. (7) into the form
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Eq. (10) can be written as follows

−
d2ψn,l(x)

dx2
+Veff(x)ψn,l(x)=Ẽn,lψn,l(x), (11)

where

Veff(x)=− A

(1+exp(αx))2
− B

(1+exp(αx))
, Ẽn,l=C. (12)

Bearing in mind Eq. (A1), we search for the solution of
the Riccati equation [33, 34]

ϕ2(x)−ϕ′(x)=Veff(x)−Ẽ0,l, (13)
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which is

ϕ(x)=
γ

1+exp(αx)
+ξ. (14)

Substituting Eq. (14) into Eq. (13) and comparing simi-
lar terms, we can find
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2
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Therefore, our partner potentials are
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Which are the shape invariants via the mapping γ→γ+α.
Thus, from Eq. (A2),
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Where n=0, 1, 2,··· and

an=a0+nα, a0=γ. (18b)

From Eqs. (15c) and (17) the eigenvalues are

Ẽn,l = Ẽ−
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From the above equation, one can obtain the energy
eigenvalues of the system. For obtaining the wavefunc-
tion of the system we start from Eq. (10), i.e.
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By a change of variable of the form
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To obtain the solution of the above equation, we consider
ψn,l(z) as below

ψn,l(z)=z
υ(1−z)βfn,l(z). (23)

By substituting of Eq. (23) in Eq. (22), we have
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Equation (24) is just a hypergeometric equation, and
its solution is the hypergeometric function

fn,l(z)=2F1(a
′,b′,c′;z). (27)

So we have

ψn,l(z) = zυ(1−z)βfn,l(z)

= zυ(1−z)β
2F1(a

′,b′,c′;z), (28)
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or equivalently

ψn,l(x) = (1+exp(αx))
−υ

(

1− 1

1+exp(αx)

)β

×2F1(a
′,b′,c′;(1+exp(αx))−1). (29)

4 Conclusion

The successful description of many phenomena in
particle and nuclear physics by the Woods-Saxon poten-
tial on the one hand, and the high number of two-body

systems on the other hand, motivated us to solve the
two-body SSE under this interaction. To go through
the problem, we followed the analytical footprint due
to its clarity and comprehensibility. We observed that
instead of the cumbersome numerical programming, the
equation can be simply solved via a Pekeris-type approx-
imation and the SUSYQM technique. We hope our work
will motivate further studies on the mesonic systems.

We wish to express our sincere gratitude to the referee

for his suggestions which improved the manuscript.

Appendix A

Supersymmetry quantum mechanics

Within this appendix, a thorough introduction to SUSY
quantum mechanics is included. These few lines form. Our
first goal in SUSYQM mechanics is finding the solution of the
Riccati equation

V∓=Φ
2
∓Φ

′
, (A1)

with V being the potential of Schrödinger equation. If

V+(a0,x)=V−(a1,x)+R(a1), (A2)

where a1 is a new set of parameters uniquely determined from
the old set a0 via the mapping F : a0 7→ a1 = F (a0) and the
residual term R(a1) does not include x, the partner poten-
tials are shape invariant and the necessary information of the

system is obtained via

En =
n

∑

s=1

R(as), (A3)

φ
−
n (a0,x) =

n−1
∏

s=0

(

A†(as)

[En−Es]1/2

)

φ
−
0 (an,x), (A4)

φ
−
0 (an,x) = Cexp

{

−

∫x

0

dzΦ(an,z)

}

. (A5)

A
†
s = −

∂
∂x

+Φ(as,x). (A6)
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