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Fore-aft asymmetry of the 2H(n,γ)3H at very low energies
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Abstract: We have used the recent effective field theory (EFT) which is constructed from two- and three-nucleon

interactions, using minimal substitution in the momentum dependence of these interactions. We present the calcula-

tions of the fore-aft asymmetry of γ-rays in the reaction 2H(n,γ)3H which are based on EFT up to next-to-next-to

leading order (N2LO). The results are compared with the recently reported calculations and measurements of the

fore-aft asymmetry of γ-rays from neutron-deuteron radiative capture. The calculated fore-aft asymmetry of the nd

radiative capture process above deuteron breakup threshold is in good agreement with the available experimental

data up to 20 MeV.
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1 Introduction

Very low-energy radiative capture reactions involv-
ing few-nucleon systems have considerable astrophysi-
cal relevance for the studies of stellar structure evolu-
tion and big-bang nucleosynthesis. Over the last decades,
photonuclear processes such as the radiative capture
of 3H and 3He and the corresponding inverse reactions
have been investigated experimentally and theoretically
with considerable interest. There have been a lot of ex-
periments using different techniques for the neutron-
deuteron radiative capture [1–7] or its inverse reaction.

Capture of thermal S-wave neutrons by deuteron pro-
ceeds primarily by M1 transitions. Because of the or-
thogonality of the radial component of the scattering
state in the neutron-deuteron system with the dominant
S component of the triton ground state, neutron cap-
ture takes place through the small S ′ component of the
3H ground state which results in the small capture cross
section value. In contrast, the radial parts of the scatter-
ing neutron-deuteron ground state are essentially identi-
cal which results in a large capture cross section [8, 9].

A variety of electromagnetic observables involving the
two- and three-body nuclei are taken as a case study
for the neutron-deuteron and proton-deuteron radiative
captures, and the magnetic form factors of 3H and 3He
(for a review, see Ref. [8]). The first theoretical cal-
culations were restricted to phenomenological interac-
tions with various approximations in the bound state
wave function and the scattering states. Early con-
sistent theoretical calculation for both the initial and

the final state was done by Gibson et al. [10]. The
very low-energy neutron-deuteron radiative capture pro-
cess is dominated by the magnetic dipole (M1) tran-
sition, and has been studied by several authors [11–
13] in configuration-space with inclusion of three-body
forces, final state interaction (FSI), conserved two- and
three-body electromagnetic currents, and explicit meson
exchange currents (MEC). Most recently, Marcucci et
al. [13] applied two different approaches for constructing
conserved two- and three-body electromagnetic currents:
one is based on meson-exchange mechanisms, while the
other uses minimal substitution in the explicit isospin
exchange operator–momentum dependence of the two-
and three-nucleon interactions. They calculated a va-
riety of observables for the A=3 nuclear systems, cross
sections as well as polarization observables in the energy
range 0–20 MeV, to test their model of nuclear current
operator.

The recently developed pionless effective field theory
(EFT) is particularly suited for high order precision cal-
culation [14–28]. The so-called pionless EFT in nuclear
physics aspires to a systematic classification of all forces.
At its heart lies the tenet that physics at those very low
energies can be described by point-like interactions be-
tween nucleons only. In this approach, all particles but
the nucleons themselves are considered high energy de-
grees of freedom and are consequently “integrated out”.
The resulting EFT is considerably simpler than poten-
tial models or the “pionful” version of nuclear EFT (in
which pions are kept as explicit degrees of freedom), but
its range of validity is reduced to typical momenta below
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the pion mass. There are many processes situated at
thermal energies which are both interesting in their own
right and important for astrophysical applications. Re-
cently we have calculated the cross section of radiative
capture process nd→3Hγ by using pionless EFT [24, 25].
No new three-nucleon forces are needed up to N2LO in
order to achieve cut-off independent results, in addition
to those fixed by the triton binding energy and nd scat-
tering length in the triton channel. The cross section
is determined to be σtot = (0.503±0.003)mb. For neu-
tron radiative capture and their inverse, photo-neutron
reactions, experiments have the inherent selectivity of
the photon, which almost exclusively excites the ∆T=1,
∆S=0 resonances, but have the disadvantage that the E2

strength cannot be directly observed, due to the large E1

cross section. Therefore identification of E2 strength is
performed by observing the interference between the E1

and E2 amplitudes. This is usually done by measuring
the fore-aft asymmetries in the angular distribution of

the reaction products [29].
The aim of the present paper is to extend the inves-

tigations of Refs. [24–28] to calculate the fore-aft asym-
metry of 2H(n,γ)3H at very low energies. The empha-
sis is on constructing three-body currents with model-
independent theory corresponding to three-nucleon inter-
actions and comparison of our model’s result with those
of other model-dependent theory.

This paper is organized as follows: In Section 2, we
present the theoretical framework of our calculations.
The results are discussed is Section 3. Finally, our con-
clusions are summarized in Section 4.

2 A brief review of the theoretical frame-
work

The proper Lagrangian including of the three-nucleon
force is given by [22]

L = N †

(
iD0+

D2

2MN

)
N−di†

[
σd+

(
iD0+

D2

4MN

)]
di−tA†

[
σt+

(
iD0+

D2

4MN

)]
tA+yd

[
di†

(
NTP (3S1)N

)
+h.c.

]

+yt

[
tA†

(
NTP (1S0)N

)
+h.c.

]
+LThree-Nucleonforce+LB , (1)

where MN, N , di and tA are the nucleon mass, the
nucleon field, two dibaryon fields corresponding to the
deuteron and the spin-singlet virtual bound state in S-
wave nucleon–nucleon scattering, respectively. P (3S1)=
1√
8

σ2σiτ 2 and P (1S0) =
1√
8

σ2τ 2τA are the projection

operators, where σ (τ ) operating in spin (isospin) space,
project out the 3S1 and 1S0 NN partial waves, respec-
tively. After minimal substitution, Dµ =∂µ+ieAµ·Q̂( Q̂
is the charge operator) and gauge fixing terms for the
photons, the LB is given by

LB =
e

2MN

N †(k0+k1τ
3)σ.B

+e
L1

MN

√
r(1S0)r(3S1)

dt
j†ds3Bj+h.c. (2)

where k0 = 1/2(kp+kn) = 0.4399 and k1 = 1/2(kp+kn) =
2.35294 are the iso-scalar and iso-vector nucleon mag-
netic moment in nuclear magnetons, respectively. The
unknown coefficient L1, will be fixed at its leading non-
vanishing order by the thermal cross section [16]. In the
triton channel of the three-nucleon system, the three-
body interactions are shown with strength H(Λ) and is
also required for renormalization at leading order [17]. It
can be expanded as

H(E;Λ) =
2H0(Λ)

Λ2
+

2H2(Λ)

Λ4
(ME + γ2

t ) + ··· , (3)

where Λ is a momentum cutoff applied in the three-

body equations discussed below and H(Λ) a known log-
periodic function of the cutoff that depends on a three-
body parameter Λ∗. The deuteron wave function renor-
malization constant is given as the residue at the bound
state pole:

Z−1
0 =i

∂
∂p0

1

i∆d(p)

∣∣∣∣
p0=−

γ2
d

MN
,p=0

. (4)

By gauging the above Lagrangian and direct calcula-
tion including the leading relativistic corrections we get

L = d†
j

[
i(∂0+ieA0)+(∇−ieA)2

(
1

4MN

+
γ2

8M 3
N

)

−(∂0+ieA0)
2

(
1

4MN

)]
dj+··· . (5)

One recovers the correct matrix elements of Jµ
em,

in each order, to reproduce the couplings induced by
Eq. (1).

The electric and magnetic transitions are shown by
El(

2S+1LJ) and Ml(
2S+1LJ), where l is the total angular

momentum of the photon, l>1, and J , L and S are the
total angular momentum, the orbital angular momen-
tum and the spin of the two-nucleons, respectively. A
state with orbital angular momentum L can be described
by a tensor, with components Ri1,i2,···,iL

symmetric and
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traceless in each pair of indices [30]

L=0, R=1,

L=1, Ri=p̂i,

L=2, Rij =
1

2
(3p̂ip̂j−δij),

L=3, Rijk =
1

2
(5p̂ip̂j p̂k−p̂iδjk−p̂jδik−p̂kδij),··· ,

(6)

where p = 1/2(p1−p2) is the relative of two-nucleon
momentum. The amplitude components are contracted
with the dibaryon polarization vector η and electric or
magnetic multipole transition, with the photon ith di-
rection and the photon polarization ε [30]:

E1 εi=Ei,

M1 (k̂×ε̂)i=Mi,

E2 εik̂j+εj k̂i=Eij ,··· .
(7)

To this approximation, we show the electric dipole am-
plitudes E1(

1S0), E1(
1D2), the magnetic dipole M1(

3P0),
M1(

3P1), M1(
3P2), the electric quadrupole E2(

3P1) and
E2(

3P2), and ignore the other higher multipole ampli-
tudes. In terms of the multipole components, the electric
and magnetic dipole and electric quadrupole transition
amplitudes are given by [25]

χE1
= χ†{E1(

1S0)ε·η+E1(
1D2)εiηjRij}χc,

χM1
= χ†{M1(

3P0)i(σ·p̂)η·(k̂×ε̂)+M1(
3P1)i(σ×p̂)

·[η×(k̂×ε̂]+M1(
3P2)iεijkUkmηmk̂iεj}χc,

χE2
= χ†{E2(

3P1)iεijkσj p̂kEimηm

+E2(
3P2)iεijkUjmEkmηi}χc, (8)

with xc=iσ2x
∗ and Uij =3/2(σip̂j+σj p̂i)−(σ·p̂)δij .

At thermal energies the nd radiative capture proceeds
through S-wave capture predominantly via magnetic
dipole transition, Mα(2S+1LJ), where L=0, S=1/2,3/2
and α=1. The contribution of electric transition
Eα(2S+1LJ) for energies of less than 60 keV to the to-
tal cross section is very small. Therefore electric transi-
tion from the initial state will not be considered in low
energies.

The M1 amplitude receives contributions from the
magnetic moments of the nucleon and dibaryon opera-
tors coupling to the magnetic field, which are described
by the Lagrange density involving fields [15, 24]:

LB =
e

2MN

N †(k0+k1τ
3)σ.BN

+e
L1

MN

√
r(1S0)r(3S1)

dt
j†ds3Bj+h.c, (9)

where dt is the 3S1 dibaryon and ds is the 1S0

dibaryon. k0 = 1/2(kp+kn)=0.4399 and k1 = 1/2(kp+

kn)=2.35294 are also the isoscalar and isovector nucleon
magnetic moment in nuclear magnetons, respectively.
The unknown coefficient L1, will be fixed at its leading
non-vanishing order by the thermal cross section [16].
The effective range theory (ERT) result differs from the
EFT result due to the absence of a four-nucleon-one-
photon operator [16] and cannot be obtained alone from
nucleon-nucleon scattering data.

The radiative capture cross section nd→3Hγ at very
low energy is given by [24]

σ=
2

9

α

vrel

p3

4M 2
N

∑

iLSJ

[|χ̃LSJ
i |2], (10)

where

χ̃LSJ
i =

√
6π

pµN

√
4πχLSJ

i , (11)

with χ standing for either E or M and µN being in nu-
clear magneton and p being the momentum of the inci-
dent neutron in the center of mass.

The derivation of the integral equation describing
neutron-deuteron scattering has been discussed before
[18, 24]. We present here only the results. Nuclear inter-
action processes are calculated perturbatively with the
small expansion parameter Q which is the ratio of the
light to heavy scales. The light scales include the in-
verse S-wave nucleon-nucleon scattering length in the
1S0 channel, the deuteron binding momentum in the
3S1 channel, the magnitude of the nucleon external mo-
mentum p in the two-nucleon center-of-mass frame, and
the momentum transfer to the two-nucleon system. The
heavy scale is set by the pion mass mπ.

Neutron-deuteron scattering amplitude including the
new term generated by the two-derivative three-body
force is shown schematically in Fig. 1. This channel is
expected to be more sensitive to the short range physics
in general, and in fact the three-body interaction is
needed at leading order to ensure correct renormaliza-
tion. For calculations, the amplitude ti(j) describe the
dt+N→ds+N(dt+N→dt+N) process and is written as
an integral equation form [17]

ti(j)(p,k) =
1

4
[3K(p,k)+2H(E,Λ)]

+
1

2π

∫Λ

0

dqq2[Di(j)(q)[K(p,q)

+2H(E,Λ)]ti(j)(q)+Dj(i)(q)[3K(p,q)

+2H(E,Λ)]tj(i)(q)], (12)

where

Di(j)(q)=Di(j)

(
E− q2

2M
,q

)

are the propagators of deuteron. k denotes the ini-
tial (on-shell) relative momentum of the deuteron and
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the third nucleon, and p the final (off-shell) momentum.
There is no real bound state in the spin singlet channel
of the two-nucleon system. For the spin-triplet or spin-
singlet S-wave channel, one replaces the two-boson bind-
ing momentum γ and effective range ρ by the deuteron
binding momentum γt =45.7025 MeV or the scattering
length as = 1/γs = −23.714 fm and the effective range
ρt=1.764fm or rs=2.73 fm, at zero momentum [17].

We now turn to the Faddeev integral equation to be
used in the M1 calculation. The Faddeev equation has
been solved for the triton bound state to some order
(e.g. LO), then the Faddeev amplitudes are taken and
sandwich the photon-interactions with nucleons between
them when the photon kernel is expanded to the same
order. The same procedure will also be done separately
for calculation at NLO and N2LO orders. Finally the
wave function renormalization in each order will be done
(for more details, see Ref. [24, 25]).

The diagrams in Fig. 2 represent the contribution of
electromagnetic interaction with nucleon, deuteron, four-
nucleon-magnetic-photon operator described by a cou-
pling between the 3S1-dibaryon and 1S0-dibaryon and
a magnetic photon. As mentioned in the introduction,
in another paper [24], we have presented a detailed
schematic of these diagrams in neutron-deuteron radia-
tive capture for (206E6200 keV) up to N2LO. Photon
direct interaction with exchanged nucleon is shown in
Fig. 2(c). For this interaction, we have p.A and in very
low energy relevant to BBN, this particular contribution
has been ignored.

The last diagrams in Fig. 2 with insertion of pho-
ton to H2 vertices is drawn for one possibility when E2

in higher energies is considered. The parameter H2 is
the strength of the three-nucleon interaction with two
derivatives (for more details see [24, 25]).

Fig. 1. The coupled Faddeev equation for nd-scattering. The thick solid line: propagator of the two intermediate
auxiliary fields Ds and Dt, denoted by D; K: the propagator of the exchanged nucleon; H: the three-body force.

Fig. 2. The Faddeev equation for nd-radiative capture up to N2LO. The circles indicate the insertion of nd-scattering
amplitude up to LO from Fig. 1 (only up to the first line of perturbative expansion of the Faddeev equation (Fig. 1)).
The three-body interactions are shown with strength H(Λ). The wavy line shows photon and small circles show
the magnetic photon interaction. The photon is minimally coupled. The semi-circles show the final triton bound
state. The remaining notation is shown as in Fig. 1.
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For triton channel, the on-shell amplitude tt(k,k) is
given by

T (k)=Ztt(k,k). (13)

where Z =
8πγ

M
(1+γρ+(γρ)2+···) is the wave function

renormalization. To complete the NLO calculation the
wave function renormalization constant Z is found from

1

Z
=

1

Z0+Z1

' 1

Z0

−Z1

Z2
0

=
1

Z0

−i
∂

∂p0

iId(p0,p)
∣∣∣
p0=E=−EB

(14)

and thus Z1=Z2
0 .

We solve the integral equation by the insertion of
Q in the integral equation and iteration of the kernel.
The H0 is determined from the 2S 1

2

scattering length

a3 =(0.65±0.04)fm [19]. For calculations up to LO and
NLO orders, the H0 is the only three-body force enter-
ing. At N2LO, the H2 is required. At this order of cal-
culations, it is determined by the triton binding energy
B3=8.48 MeV.

The so-called fore-aft asymmetry, in the angular dis-
tribution of the cross section, is defined by

as=
σ(54.7◦)−σ(125.3◦)

σ(54.7◦)+σ(125.3◦)
, (15)

where θc.m.=54.7◦(125.3◦) are the γ-N scattering angles.

3 Results and discussion

The Faddeev integral equation is numerically solved
up to N2LO. The values ~c=197.327 MeVfm, and mass
of M = 938.918 MeV for nucleon are used. For the
nucleon-nucleon triplet channel, a deuteron binding en-
ergy (momentum) of B=2.225 MeV (γd=45.7066 MeV)
is used. For the NN singlet channel, a residue of Zd =
1.690 (3) is used. The 1S0 scattering length is chosen to
be as=−23.714 fm. L1 is found to be −4.5 fm, after fix-
ing the leading non-vanishing order in the thermal cross
section of neutron-proton radiative capture [16].

The 2H(n,γ)3H fore-aft asymmetry resulting from our
calculation up to N2LO and from that of Ref. [13, 31] is
compared with the existing experimental data in Fig. 3.

In this figure, we have compared two different ap-
proaches for constructing conserved two- and three-
body electromagnetic currents: one is based on modern
nucleon-nucleon potentials, while the other uses mini-
mal substitution and gauge invariant EFT of the three-
nucleon systems. In the AV18/UIX potential model, one
has constructed a realistic model for the three-body elec-
tromagnetic current satisfying the current conservation
relation with the Urbana or Tucson-Melbourne three-
nucleon interactions.

Fig. 3. Fore-aft asymmetry for nd radiative cap-
ture as function of the energy, obtained with
the EFT up to N2LO in comparison with the
AV18/UIX (gauge invariant) Hamiltonian model
current. The results of the calculation have also
been reported (the dashed lines [31] and the long
dashed lines [13]). The experimental data are
from Refs. [1, 6, 32].

For neutron-deuteron radiative capture, the descrip-
tion of the angular distribution is not as good. For ener-
gies above ∼20 MeV all theoretical results give a much
smaller asymmetry in comparison with the experimen-
tal data. For this energy range, the calculated result
shows a large discrepancy from the experimental data.
These differences could be due to the problems in the
analysis of the data to extract the experimental values
of fore-aft asymmetry. There are also inconsistencies be-
tween the asymmetries given in Refs. [5, 6], therefore it
is likely that these discrepancies are due to the experi-
mental problems.

For higher energies, the M1 contribution is not likely
to solve the problem, since it is only expected to have an
effect at extreme angles or at very low energies. It should
be noted that three-nucleon forces are not expected to
solve the problem since the angular distribution shows
no potential dependence. A possible solution could be
the inclusion of higher multipoles in the calculation at
higher energies.

By estimation of the sensitivity to short-distance
physics, one can provide a reasonable error analysis, by
employing a momentum cut-off Λ in the solution of the
Faddeev equation and varying it between the breakdown-
scale Λ 6π to ∞. All physical observables must be inde-
pendent of cut-off (Λ), up to the order of the expansion.

4 Summary and conclusion

In this paper we have calculated the fore-aft asymme-
try of 2H(n,γ)3H process up to N2LO below E=25 MeV.
By comparing with our calculations using EFT, we have
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shown that our theoretical curve up to N2LO in com-
parison with other theoretical methods, is in good agree-
ment with the available experimental data. It is also
shown that the angular distribution is insensitive to the
employed interaction, we do not expect large effects of
three-nucleon forces.

In conclusion, satisfactory agreement between theo-
ries and some experiments for the nd radiative capture

observables of above the deuteron breakup threshold up
to 20 MeV has been found. Some discrepancies, however,
persist in the vector polarization observables at forward
angles. The results converge order by order in low energy
perturbative expansion and cut-off independently at each
order. We notice that our calculation has a systematic
error which is now smaller than the experimental error
bar.
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