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Neighboring azimuthal bin-bin multiplicity correlation as a direct

measure for the shear viscosity in relativistic heavy ion collisions *

LI Lin(p�)1;1) WANG Mei-Juan(�{ï)2 WU Yuan-Fang(Ç��)1

1 Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics,
Central China Normal University, Wuhan 430079, China

2 Physics Department, China University of Geoscience, Wuhan 430074, China

Abstract: Neighboring azimuthal bin-bin multiplicity correlation is suggested to be a good measure for internal

layer-to-layer interactions of the formed matter in relativistic heavy ion collisions. It is shown to be directly related

to the shear viscosity of the formed matter. As an application of this method, the shear viscosity in the samples

generated by a multi-phase transport model (AMPT) is estimated. The results are in qualitative agreement with

the theoretical calculation from microscopic interactions, i.e., the larger the scattering cross section, the smaller the

shear viscosity.
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1 Introduction

The large collective flow observed in relativistic heavy
ion collisions (RHIC) is regarded as one of the most im-
portant pieces of evidence of the formation of a new form
of matter – quark-gluon plasma (QGP) [1–3]. The be-
havior of elliptic flow has been successfully described by
hydrodynamic models [4, 5]. This shows that the formed
matter behaves like an almost-perfect fluid with a very
small specific shear viscosity [6].

In recent years, there has been considerable interest
in shear viscosity of strongly interacting Quark-Gluon
Plasma. Using the string theory, P. K. Kovtun showed

that there exists a lowest limit value η/s=
1

4π

for a wide

class of strong-coupled quantum field systems [7]. In
SU(3) gauge theory, an upper bound η/s61 is given by
Harvey B. Meyer [8].

A lot of viscous hydrodynamic models have been per-
formed to reproduce flow measurements from experimen-
tal data quite successfully [6, 9]. The shear viscosity can
be extracted by comparing the experimental data to the
theoretical calculations. However, the precise value of
shear viscosity is hard to determine because of the uncer-
tainties, particularly from the poor knowledge of particle
production and thermalization in the early stage [10–13].
The unknown initial conditions lead to large uncertainty
in eccentricity ε2 and elliptic flow v2 [6]. It is the largest

source of uncertainty to determine the shear viscosity
from experimental data. A combined analysis of v2 and
v3 could reduce the model uncertainty in the initial de-
formation of the formed matter and its event-by-event
fluctuations [10, 14–17]. Huichao Song and Ulrich Heinz
extracted the specific shear viscosity η/s by comparing
the experimental data with viscous hydrodynamics and

have established a robust upper limit
1

4π

<η/s<2.5× 1

4π

[18]. M. Luzum and J. Y. Ollitrault presented a proposal
to extract shear viscosity from a simultaneous fit to pt-
integrated vn measurements from ultra-central collisions
[12]. It can extract the shear viscosity with the smallest
uncertainty. Besides, Zhe Xu et al. [19, 20] developed
a relativistic perturbative QCD (pQCD) model BAMPS
from microscopic transport calculations to extract the
shear viscosity coefficient η.

Some attempts were also made to extract the shear
viscosity of the matter experimentally. Sean Gavin and
Mohamed Abdel-Aziz [21] measured shear viscosity by
using transverse momentum correlation in relativistic
nuclear collisions. This method has been subsequently
used by STAR collaboration in Au+Au collisions at√
sNN=200 GeV [22, 23].

As there are large uncertainties, a much more precise
extraction of shear viscosity is expected. Furthermore,
it is necessary to determine the shear viscosity directly
from the experimental data, independent of implementa-
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tion of hydrodynamic models. From the origin of vis-
cosity, smaller value of shear viscosity means the dense
matter is closer to perfect liquid. Perfect fluid means
no internal interactions. While for viscous fluid, there is
friction between any two layers and the flow velocity is
different from layer to layer. A direct probe for friction
force between layers will be helpful in getting the value
of shear viscosity directly.

In this paper, we first briefly introduce the azimuthal
bin-bin multiplicity correlation pattern to measure the
internal interaction of the formed matter. It can be used
as a good probe for the internal layer-to-layer interac-
tions of formed matter. Then, the relation between the
correlation pattern and shear viscosity is derived. Fi-
nally, the shear viscosity is estimated with the samples
generated by AMPT model for different scattering cross
sections.

2 Azimuthal bin-bin multiplicity corre-

lation pattern and shear viscosity

A spatially dependent bin-bin correlation pattern
is suggested to explore the internal interaction of the
formed matter [24]. It is well known that the general
2-bin correlation is defined as

Cm1 ,m2
=

〈nm1
nm2

〉
〈nm1

〉〈nm2
〉−1, (1)

where m1 and m2 are the positions of the two bins in
phase space and nm is the measured content in the mth
bin. If there is no correlation between particles in the
observed window, Cm1,m2

vanishes.
We divide the 2π azimuthal angle equally intoM bins

and specify nφ as the multiplicity in the mth angular bin.
If we let m1=m and m2=m+1, Cm1,m2

is reduced to the
neighboring angular-bin correlation pattern, which mea-
sures how the nearby particles correlate with each other
in different directions of azimuthal space.

Cφ,φ+δφ=
〈nφnφ+δφ〉
〈nφ〉〈nφ+δφ〉

−1, (2)

φ=0 refers to the direction of the reaction plane in the
nuclear collision.

It has been shown by M. Stephanov [25], that if the
interaction is small (the system is not far away from non-
interaction gas in thermal equilibrium), in the leading
order, the joint probability of bin-bin multiplicity can
be determined by the interaction energy. The bin-bin
multiplicity correlation is,

Cφ,φ+δφ=e−βEI(φ)−1≈−βEI(φ). (3)

Here, EI(φ) is the interaction energy and is the function
of the azimuthal angle φ. β is the inverse of temperature
T . This is in fact a very universal expression in micro-
scopic level. For the whole system, the total interaction

energy, ECorr, is the integration of EI(φ) for the whole
azimuthal range,

ECorr =

∫2π

0

EI(φ)dφ=−
∫2π

0

Cφ,φ+δφ

β
dφ

= −
∫2π

0

TCφ,φ+δφdφ. (4)

In hydrodynamics, the dissipative energy due to the
interaction of friction is well estimated. It is usually
supposed that the momentum transfer due to viscosity
is proportional to the first derivatives of the velocity. So
the viscous stress tensor is written as,

σ′

ik=η

(

∂vi

∂xk

+
∂vk

∂xi

−2

3
δik

∂vl

∂xl

)

+ξδik

∂vl

∂xl

, (5)

where the η(p,T ) and ξ(p,T ) are shear and bulk viscosi-
ties, respectively. In general, they are functions of pres-
sure and temperature. For in-compressive fluid, the last
two terms vanish. The dissipative energy due to viscous
effects in the whole volume of the fluid is,

EDiss=−1

2

∫
η

(

∂vi

∂xk

+
∂vk

∂xi

)2

dV dt. (6)

If we take the cylindrical coordinates and assume that
there is no rotation in the azimuthal direction and ignore
the velocity gradient along longitudinal direction at first
approximation, the dissipative energy in the whole fluid
can be simply written as,

EDiss=−1

2

∫
η

(

1

r

∂vT

∂φ

)2
1

2
r2dφdzdt

=−1

4

∫
η

(

∂vT

∂φ

)2

dφdzdt. (7)

If the bin-bin correlation is only due to the viscous
interaction, the corresponding interaction energy is equal
to the dissipative energy. The relation between correla-
tion pattern and shear viscosity can be derived,

η≈
4T

∫2π

0

Cφ,φ+δφdφ

∫(

∂vT

∂φ

)2

dφdzdt

. (8)

Here, the temperature is usually estimated with a ther-
mal model, and the integral of velocity gradient in lon-
gitudinal and time is roughly replaced by the velocity
gradient of final state particles.

To get the value of shear viscosity of the formed mat-
ter, we need to calculate the velocity gradient of the ra-
dial flow and the azimuthal bin-bin multiplicity correla-
tion separately.

Here, we use the azimuthal distribution of mean ra-
dial rapidity of the final state particles to get the velocity
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gradient of radial flow [26, 27]. In Ref. [27], we suggested
a method to measure the anisotropic radial velocity di-
rectly. The radial flow is usually described by two pa-
rameters. The first one is the isotropic radial velocity
(or rapidity, νT=tanhyT). It presents the surface profile
of isotropic transverse expansion of the source at kinetic
freeze-out. The other parameter is the anisotropic radial
velocity (i.e., the azimuthal dependent radial velocity).
It measures the difference of the radial flow strength in
and out of the reaction plane. In Ref. [27], it is demon-
strated that the azimuthal amplitude of this suggested
distribution characterizes the anisotropic radial flow, and
coincides with the parameter of anisotropic radial rapid-
ity extracted from a generalized blast-wave parameteri-
zation. So, the velocity gradient of flow can be extracted.

The transverse rapidity of a final state hadron is de-
fined as,

yT=ln

(

mT+pT

m0

)

, (9)

where m0 is the particle mass in the rest frame, pT is
transverse momentum, and mT=

√

m2
0+p

2
T is the trans-

verse mass. The mean transverse rapidity in a given
azimuthal angle bin is defined as the summation of all
particles’ rapidities divided by the total number of par-
ticles, i.e.,

〈yT(φ−ψr)〉=
1

Nevent

Nevent
∑

e=1

1

N e
m

Ne

m
∑

i=1

ye
T,i(φm−ψr), (10)

where ye
T,i is the transverse rapidity of the ith particle

andN e
m is the total number of particles in mth azimuthal

angle bin in eth event. Eq. (10) measures the mean trans-
verse motion in the azimuthal direction [26]. It is a pe-
riodic function of azimuthal angle and can be well fitted
by,

〈yT(φ)〉=yT0+yT2cos(2φ). (11)

Eq. (11) consists of two parts: an isotropic mean ra-
pidity and a mean azimuthal dependent rapidity ampli-
tude. Furthermore, the thermal motion is isotropic and
does not contribute to the anisotropic radial rapidity. So
the anisotropic amplitude, yT2, should correspond to the
parameter of anisotropic radial rapidity.

3 A rough estimation for shear viscosity

in AMPT

As an application of this method, the shear viscos-
ity in the sample generated by a multi-phase transport
model (AMPT) [28] with string melting is estimated.
The AMPT is a multi-phase transport model, which con-
tains four main components: the initial conditions, par-

tonic interactions, conversion from the partonic to the
hadronic matter and hadronic interactions. The initial
conditions are based on the HIJING model [29]. The
time evolution of partons is then treated by the Zhang.s
Parton Cascade (ZPC) model [30]. After partons stop
interacting, a combined coalescence and string fragmen-
tation model is used for the hadronization process. After
hadronization, scatterings among the resulting hadrons
are described by a relativistic transport (ART) model
[31] which includes baryon-baryon, baryon-meson and
meson-meson elastic and inelastic scatterings.

Our previous work [32, 33] has shown that the ini-
tial conditions for the geometric anisotropy of the over-
lapping collision region affects the observed azimuthal
bin-bin multiplicity correlation pattern. So in order to
get real internal interactions of the observed sample, we
should be careful to choose the same kind of events, i.e.,
the sample with fixed multiplicity and fixed impact pa-
rameter. We generate two samples for Au+Au collisions
at

√
sNN =200 GeV for σ=3 mb and σ=6 mb (σ is the

scattering cross section). Here, the multiplicity Nch and
impact parameter are fixed.

First we study the case for the sample with σ=3 mb.
Here we choose the rapidity range y∈[−2.0, 2.0] and fix
the multiplicity Nch=2793±20 and the impact parameter
b=7 fm. The azimuthal bin-bin multiplicity correlation
pattern and the mean transverse rapidity distribution
are shown in Fig. 1(a), (b), which are both in-plane like.

They are typical periodic functions of the azimuthal
angle. It is easy to express them in the form of the
Fourier expansion (here we keep to the second order
terms approximately), which is as follows: Cφ,φ+δφ ≈
0.00246+0.00059cos(2φ), 〈yT(φ)〉≈1.311+0.0356cos(2φ).

As we know, the anisotropic contribution is mainly
from the second harmonic term. Here, we will ignore the
flat part of the azimuthal bin-bin multiplicity correlation
pattern. From the equation vT=tanhyT, we can get that:
〈vT(φ)〉≈0.865+0.0356cos(2φ). The corresponding veloc-
ity gradient of radial flow along the azimuthal direction
is shown in Fig. 1(c). If we approximate the tempera-
ture to Tc=154 MeV [34], using Eq.(8), the value of shear
viscosity is about 0.15 corresponding to the case for the
sample with σ=3 mb.

We measure the shear viscosity in the sample of
σ=6 mb in a similar way. The results are shown in
Fig. 2. If we fit them by the 2nd order Fourier ex-
pansion: Cφ,φ+δφ ≈ 0.00347+0.00068cos(2φ), 〈yT(φ)〉 ≈
1.316+0.0402cos(2φ). Then we get the value of shear
viscosity for σ=6 mb is about 0.13.

Finally, we compare the values of the shear viscosity
extracted from the AMPT model with the theoretical
calculation [35]. On the microscopic side, η is related to
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Fig. 1. The azimuthal bin-bin multiplicity correlation pattern (a), the azimuthal distribution of mean radial rapid-
ity(b), and the velocity gradient of the radial flow (c), for Au+Au collisions at

√
sNN =200 GeV with σ=3 mb,

b=7 fm and Nch=2793±20 generated by AMPT with string melting model.

Fig. 2. The azimuthal bin-bin multiplicity correlation pattern (a), the azimuthal distribution of mean radial rapid-
ity(b), and the velocity gradient of the radial flow (c), for Au+Au collisions at

√
sNN =200 GeV with σ=6 mb,

b=7 fm and Nch=2724±20 generated by AMPT with string melting model.

the scattering cross section σ. Ideal hydrodynamics as-
sumes that the transport mean free path is so small that
viscous terms can be ignored. In fact, in kinetic the-
ory for a relativistic fluid [36], the shear viscosity can be

written as η≈ 4

15
npλ, where n is the particle density, p is

the average momentum of a fluid particle, λ is the mean
free path. The mean free path is λ∼ 1/(nσ), where σ
is the transport cross section, thus η∼ T/σ. In a clas-
sical gas of massless particles with isotropic differential
cross section, the shear viscosity is given by η≈1.264T/σ
[37, 38]. Our estimates for the shear viscosity are 0.15
for σ=3mb and 0.13 for σ=6 mb respectively. It is inter-
esting to note that our simple estimates are in qualita-
tive agreement with the theoretical expectation, i.e., the
larger the scattering cross section, the smaller the shear
viscosity.

4 Summary and conclusions

In this paper, the azimuthal bin-bin multiplicity cor-
relation pattern is suggested, which is used as a good
probe for the internal layer-to-layer interaction of the
formed matter at RHIC. Then, the relation between
correlation pattern and shear viscosity is derived. As
an example, we use the AMPT model to estimate the
shear viscosity. Two samples for different cross sections
σ=3 mb and σ=6 mb have been analyzed. Our results
are in qualitative agreement with the theoretical calcu-
lation from microscopic interactions, i.e., the larger the
scattering cross section, the smaller the shear viscosity.
Furthermore, we are looking forward to applying this
suggested measure of shear viscosity in current relativis-
tic heavy ion collision experiments.
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