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Suppression of the emittance growth induced by CSR in a DBA cell
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Abstract: The emittance growth induced by Coherent Synchrotron Radiation (CSR) is an important issue when

electron bunches with short bunch length and high peak current are transported in a bending magnet. In this paper,

a single kick method is introduced that could give the same result as the R-matrix method, but is much easier to

use. Then, with this method, an optics design technique is introduced that could minimize the emittance dilution

within a single achromatic cell.
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1 Introduction

The design and study of the next generation light
source based on Energy Recovery Linac (ERL) and Free
Electron Lasers (FEL) have been proposed worldwide.
In these machines, electron bunches with short bunch
length, high peak current and small emittance are gen-
erated and transported. It is very important to mini-
mize the transverse emittance growth in order to achieve
high quality electron beams. Emission of Coherent Syn-
chrotron Radiation (CSR) is considered to be one of the
most critical sources for the beam emittance dilution
when bending magnets or bunch compression sections
exist in the transport lines.

According to the CSR wake potential [1], the energy
change of an electron due to the CSR emission is a func-
tion of its longitudinal position in the bunch. Conse-
quently, different bunch slices are deflected with differ-
ent angles in a bending magnet, and this deflecting er-
ror dilutes the projected emittance of the electron bunch
[2]. This effect has been studied intensively [3, 4], and
it is shown that if the longitudinal electron distribution
does not change significantly, then the rms energy spread
caused by CSR can be estimated by the function:

∆Erms=0.22
eQLb

4πε0ρ2/3σ4/3
s

, (1)

where e is electron charge, Q is the bunch charge, Lb

is the length of the bending magnet, ρ is the bending
radius, and σs denotes the rms bunch length. For a
constant bending radius, this is a linear function of s,
the longitudinal path length, and can be simplified as
∆E =κs, where κ denotes the coefficient of Lb in func-
tion (1). Under this linear approximation, two optics

design techniques have been introduced for the suppres-
sion of the CSR induced emittance growth: the envelope
matching method [5], and the cell-to-cell phase match-
ing method [6]. However, these two methods have their
shortcomings. Envelope matching can only minimize
instead of completely canceling the emittance growth.
In addition, the cell-to-cell phase matching method re-
lies strongly on the symmetrical character of the lattice
and on the cell-to-cell betatron phase advance. In the
present paper, another method of emittance cancella-
tion is shown, which can completely cancel the emit-
tance growth due to linear CSR effect within a single
achromatic cell.

The rest of this paper is organized as follows. In Sec-
tion 2, a single kick method is introduced to describe
the transverse effect of CSR. In his paper [7], R. Ha-
jjima proposed a 5-by-5 R-matrix to calculate the emit-
tance growth arising from CSR effect. Using this matrix
method, an exact description of the linear CSR effect
is acquired, which can be treated as a standard trans-
fer matrix. But all calculations involve complex 5-by-5
R-matrix manipulations and it is hard to get an intu-
itive idea of what has happened. For this reason, S. Di.
Mitri [8] used a single kick to describe the CSR induced
transverse effect. But his kick method can only give a
qualitative rather than quantitative agreement with the
R-matrix method. A single kick description is given in
Section 2, which gives the same results as the R-matrix
method, and avoids complicated matrix manipulations.
In Section 3, the CSR induced emittance in a DBA cell
is studied using this single kick method, and a constraint
condition on the lattice is found, which could cancel the
CSR kick completely. In Section 4, different DBA lat-
tices with various beam and optical parameters are simu-
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lated using code ELEGANT [9]. In addition, it is ver-
ified that our constraint condition really produces the
smallest emittance growth.

2 Kick description of CSR effect

2.1 Kick description of the dispersion

The matrix description of dispersion has been widely
used. Consider a particle with energy deviation δ, whose
transverse coordinates are (x0, x′

0) at the entrance of a
dipole. When it goes through the dipole, its coordinates
change not only by the transfer matrix of the dipole,
but also by a dispersion term. If we are not interested
in the particle information inside the magnet, the dis-
persion can be considered as a point kick at the middle
point of a dipole magnet. To get the same result with the
matrix description, we choose the middle point kick to
get the same particle coordinates at the exit of a dipole,
that is Mhalf(xkick, x′

kick)=(D, D′)δ, where Mhalf is the
2-by-2 transfer matrix of half a dipole, and (D, D′) is
the dispersion function generated by the dipole. From
this equation, the dispersion kick is defined. Take a sec-
tor dipole as an example, the dispersion function at the
end of the magnet is (D, D′)=(ρ(1−cosθ), sinθ). From
the above equation, the dispersion kick can be calculated
as (xkick, x′

kick)=(0, 2sin(θ/2))δ, where θ is the bending
angle of the dipole. We can see that the expression of a
kick is simplified by placing the kick at the middle point.
Later, when we study beam dynamics in normalized co-
ordinates, this advantage will become more obvious.

Fig. 1. Layout of a double-bending cell.

As an example, we will derive the achromatic con-
dition of a double bending cell using this point-kick
model. The double bending cell is composed of two
bending dipoles at the head and end of the cell sepa-
rately, and drifts and quadrupoles between, as shown
in Fig. 1. Those two dipoles have the same bending
directions but may have different bending radius and
bending angles. In the discussion below, we will use
the normalized phase space coordinates (W , W ′), where
W = x/

√
β, W ′ = (αx+βx′)/

√
β. In such a normalized

phase space, particle trajectories form concentric circles
of different radius as shown in Fig. 2. When the disper-
sion kick (xkick, x′

kick) is normalized, (Wkick, W ′

kick)=(0,
2sin(θ/2)

√
β)δ, and the direction of dispersion kick in the

normalized phase space always sticks upward, no matter
what the Twiss parameters are before this dipole.

The motion of a particle in a double bending cell
can be characterized as follows: a particle moving along

a circle line gets a kick from the first dipole, it then
moves along a new circle. After an angle of the phase
advance between the two kick points, a kick from the
second dipole moves it into the path of a third circle. If
after two such kicks all of the particles go back to its orig-
inal circle path, then the cell will work as if no dispersion
exist and this lattice cell is achromatic. As shown Fig. 2,
from elementary geometry, we can get the achromatic
condition: (1) phase advance between the middle points
of the two dipoles must be π or (2n+1)π; and, (2) the two
dispersion kicks in normalized phase space must equal to
each other, that is, sin(θ1/2)

√
β1=sin(θ2/2)

√
β2. These

achromatic conditions can be verified by writing down
the matrix of each part of the cell and solving the achro-
matic equation, which is straightforward but involved.

Fig. 2. A schematic figure of the particle in the nor-
malized phase space, it is obvious that two identi-
cal kicks with p phase advance move the particle
back in its original path and cancel the dispersion
in the cell.

2.2 Kick description of the CSR effect

According to R. Hajima’s R-Matrix, the transverse
coordinate movement due to CSR effect can also be
treated by a matrix method, a sector dipole can be de-
scribed by a matrix:

Rd=

















cosθ ρsinθ ρ(1−cosθ) ρ(1−cosθ) ρ2(θ−sinθ)

−sinθ/ρ cosθ sinθ sinθ ρ(1−cosθ)

0 0 1 0 0

0 0 0 1 ρθ

0 0 0 0 1

















,

(2)
where the R(1, 5) and R(2, 5) terms are the CSR terms.
Then, with a similar procedure as that in Section 2.1, this
CSR induced transverse movement can also be described
by a kick in the middle of a dipole. For a sector magnet,
the CSR kick is calculated from equation Mhalf(kickCSR,
kick′

CSR)=(ρ2(θ−sinθ), ρ(1−cosθ)).

(kickCSR,kick′

CSR)

= (ρ2(θcos(θ/2)−2sin(θ/2)),θρsin(θ/2)). (3)
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Unfortunately, the CSR kick description is not as sim-
ple as the dispersion kick because the x part of the kick is
not zero. Still, this kick description is much easier than
the boring 5-by-5 R-matrix manipulation.

3 Cancellation of CSR induced emit-

tance in a DBA cell

In this section, we discuss an optics design technique
for the suppression of CSR induced emittance growth
within an achromatic cell. Although, for the sake of
simplicity, we have considered a symmetric DBA cell,
this technique can also be used on other achromatic
cells. A symmetric DBA cell is considered, which is
composed of two identical sector dipoles, and the drifts
and quadrupoles between them are also symmetric. The
Twiss parameters are chosen to satisfy the condition:
β1 = β2,α1 =−α2, where β1,α1,β2,α2 are Twiss param-
eters at the middle point of the two dipoles separately,
and the phase advance between the middle points of two
dipoles is chosen to be π, which is required by the achro-
matic condition.

The normalized phase space is still adopted to ana-
lyze the particle motion in such a DBA cell. Adding the
CSR into consideration, at each kick point the particle
experienced two kicks: a dispersion kick and a CSR kick,
and the vector sum of these two kicks is the overall effect,
as shown in Fig. 3. After the first kick point, the parti-
cle moves along a circular path in the normalized phase
space, until it reaches the second kick point. Similar to
the procedure in the cancellation of the dispersion, the
effect of the CSR can be canceled if the particle returns
to its original circle path after those two kicks.

Fig. 3. Dispersion kick and CSR kick at a kick
point in the normalized phase space.

For simplicity, we consider a particle that stays at
the original point before the first kick. Its trajectory in
the normalized phase space will be as follows: it gets

a kick from the first kick point and its coordinates can
be denoted by a vector R1 in the phase space, then the
vector R1 turn around the original point with an angle
π, which is the phase advance between the first and the
second kick point, and its vector turns into R1′. At the
second kick point a second kick vector is added and the
position vector turns to be R1′+R2. The lattice that
makes the final position vector R

′+R2=0 will show a
cancellation of the linear CSR, as well as the dispersion
in such a lattice cell, as shown in Fig. 4.

Fig. 4. The particle dynamics in normalized phase
space when the CSR and dispersion kicks are con-
sidered. Where kick1 and kick2 are all sums of
CSR and dispersion kicks, the phase advance is π

which is required by the achromatic condition as
shown in Section 2.1. From this schematic figure,
it is obvious that these kick effects cancel when
kick1=kick2.

After the first kick, the position vector in the normal-
ized phase space becomes:

R1=R
norm
dispersion+R

norm
CSR , (4)

where,

R
norm
dispersion=

(

0 2sin
θ

2

√

β1

)

δ1, (5)

R
norm
CSR =

((

ρ2

(

θcos
θ

2
−2sin

θ

2

)

/
√

β1

)

×α1

(

ρ2

(

θcos
θ

2
−2sin

θ

2

)

+β1

(

θρsin
θ

2

)

/

√

β1

))

. (6)

Since the phase advance equals π, R1′ before the second
kick point turns into:

R1′=−R1. (7)

And the kick vector at the second kick point is just one
that resembles R1, we get:

R2=R
norm
dispersion+R

norm
CSR (8)
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and
R

norm
dispersion=(0,2sin(θ/2)

√

β2)δ2, (9)

R
norm
CSR =

((

ρ2

(

θcos
θ

2
−2sin

θ

2

)

/

√

β2

)

×α2ρ
2

(

θcos
θ

2
−2sin

θ

2

)

+β2

(

θρsin
θ

2

)

/

√

β2

)

. (10)

But some caution is still needed because of the CSR ef-
fect the energy spread δ2 at kick point 2 is larger than
that at kick point 1:

δ2=δ1+κρθ. (11)

The CSR cancellation condition requires that:

R2+R1′=R2−R1=0. (12)

Substituting Eqs. (4), (8) into the equation above, and
considering that β1=β2, α1=−α2, the CSR cancellation
condition in a DBA cell can be found as:

β1=

α1ρ

(

−2+θcot
θ

2

)

θ
, (13)

for θ�1, a condition that most transport dipoles fulfill,
this condition can be simplified as:

β1∼α1ρθ/6. (14)

4 Particle numerical simulations to ver-

ify the emittance suppression

This method of emittance compensation is confirmed
by a simulation using the particle tracking code ELE-
GANT. The initial condition of the electron bunch is
assumed to be: central energy 1 GeV, bunch charge Q=
500 pC, normalized emittance εn=0.2 mm·mrad, bunch
length σs=100 fs.

For our purpose, symmetric DBA cells with different
initial Twiss parameters are constructed and simulated
using ELEGANT, the bending angle of dipoles are 3◦.
From our emittance cancellation condition (14), we can
find the requirement on the Twiss parameters at the en-
trance of the DBA cell:

2β2
0ρcot(θ/2)−2β0α0[ρ

2−cot2(θ/2)]

−2ρcot(θ/2)(1+α2
0)=0. (15)

Where β0, α0 are the twiss parameters at the DBA en-
trance, and θ, ρ are bending angle and radius of the
dipoles. Simulation results are shown in Fig. 5, where a
redder color means a larger emittance growth. The the-
oretical condition of (15) and that of envelope matching
are also shown in the figure. It is shown that the DBA
cells that satisfy our constraint really give the small-
est emittance growth, and our optic’s condition is better
than the envelope matching method.

Fig. 5. Simulation results of DBA lattices with dif-
ferent α0, and β0. The white line represents DBA
lattices that meet our condition (14), and the
black line represents lattices satisfy the envelope
matching condition.

5 Conclusion

In conclusion, we have derived an optics design tech-
nique which can significantly suppress the emittance
growth induced by CSR within a DBA cell, which has
been verified by simulation results. We believe that using
similar derivations shown above, this technique can be
expanded to be used in the design of other types of achro-
matic cells, such as asymmetric double bending cells or
TBAs, etc. However, in our study we have assumed a
constant bunch length and linear approximation of the
CSR induced energy spread, so that in beam transport
systems where the bunch length changes significantly, or
nonlinear effects of CSR takes an important role, further
studies are still needed.
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