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Abstract: We solve the Duffin-Kemmer-Petiau (DKP) equation in the presence of Hartmann ring-shaped potential

in (34+1)-dimensional space-time. We obtain the energy eigenvalues and eigenfunctions by the Nikiforov-Uvarov (NU)

method.

Key words:
functions

PACS: 03.65.Pm, 03.65.Ca, 98.80.Cq

1 Introduction

The first order DKP equation, which describes spin-0
and spin-1 bosons [1-3], is a direct generalization of the
Dirac equation in which the v matrices are replaced with
the S-matrices [4]. 8 matrices have three irreducible rep-
resentations: the one-dimensional representation which
is trivial, the five-dimensional representation that is for
spin-zero particles and the ten-dimensional case which
enables us to study spin-one particles [5]. In the past
decade, there has been a growing interest in the study of
DKP theory. Within the potential model, several efforts
were devoted to considering the DKP equation under
various potentials. The DKP equation with a pseudo-
harmonic potential in the presence of a magnetic field in
(241)-dimensions was solved in Ref. [6]. In Ref. [7] the
authors reported the solutions of the equation in (341)-
dimensions in the presence of coulomb and harmonic os-
cillator interactions [7]. The S-wave solutions of spin-one
DKP equation for a deformed Hulthén potential were ob-
tained in Ref. [8]. The equations have also been consid-
ered in the various related aspects including the quan-
tum chromodynamics (QCD) [9], covariant Hamiltonian
formalism [10], causal approach [11], in the context of
five-dimensional Galilean invariance [12] and scattering
of K*- nucleus [13]. Refs. [14-16] analyze the effect of
the magnetic field on the spectrum of the system. A
survey on other physical terms within the framework of
the equation can be found in Refs. [17-23]. In this work,
we intend to solve the DKP equation for a spin-one par-
ticle in (3+1)-dimensions in the presence of Hartmann
ring-shaped potential in an analytical manner. The mo-

Received 15 April 2013

DKP equation, Hartmann ring-shaped potential, Nikiforov-Uvarov method, energy eigenvalue, eigen-

DOI: 10.1088/1674-1137/38/3/033102

tivation behind the present work is twofold. The first
is that the spin-one DKP equation and its counterpart,
i.e. the Proca equation, have not been sufficiently dis-
cussed in literature. This is not much appealing as we
do require a reliable basis to study spin-one bosons. The
second is the nature of the considered potential. We con-
sider the ring-shaped Hartmann potential which enables
us to study the deformation effects. This potential, as
our forthcoming formulae reveals, is the more general
case of the well-known Coulomb potential. The outline
of this work is as follows: In Section 2, we introduce
the DKP equation. In Section 3, we introduce the DKP
equation in the presence of the Hartmann ring shaped
potential. In Section 4, we obtain the energy eigenvalues
and eigenfunctions of the radial part by the Nikiforov-
Uvarov (NU) method. In Section 5, we solve the an-
gular part of the problem and end the manuscript with
the conclusions and comments on the applications of the
study.

2 Basic concepts of the DKP theory

The DKP equation for free scalar and vector bosons
is (h=c=1)
(5", —m)ip=0, (1)

where g* are the DKP matrices and for a spin-one field
satisfy the algebra

BBY BB B =g B g™ B, (2)
with

gHV:diag(17171’_1)7 (gMV)QZI. (3)
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In the case of vector bosons, the 5 matrices are
0 0 0 0
=T
50 _ 0 OSXS ]SXS OSXS
- =T ’
0 ]§x3 03x3 O3x3

T

6 03x3 03x3 O3x3

0 6 (A} 6
go | 0 Osxo O i,
—eiT O3x3 O3x3 Osxs ’

0" —iS; Osx3 Osys

(4)

where (S;);5=—le;;, are 3x3 matrices and £;5, is 1, —1,
0 for an even permutation, an odd permutation and re-
peated indices, respectively. (e;);;=0;; matrices are 1x3
ones with e; = (1,0,0), e; = (0,1,0), e; = (0,0,1).) The

matrices, respectively.
The more general form of the interaction is consid-
ered as

U=58,(r)+PSy(r)+6°Vi(r)+8°PVa(r),
and the equation takes the form

(ip*9,—m—-U)y=0,

()

(6)
or
(3", —m—8, (r)=PS2(r)="Vi(r)=B"PVa(r)) =0, (7)
where the projection operator is
P=diag(1,1,1,1,0,0,0,0,0,0). (8)

We write the wave function as

matrices, I5,3 and 0sy3, represent the unit and null 3x3 | and therefore the equation can be expanded as

“m 0 0 0
0 -m 0 0
0 0 —m 0
0 0 0 -m
~id, 10—V, 0 0
i3, 0 19—V, 0
i35 0 0 19—V,
0 0 ~ids 10y
0 0y 0 ~id,
o0 - id 0
S,+S, 0 0 0
0 Si+S, 0 0
0 0 S+S, 0
0 0 0 Si+S,
0 1 0 0
a 0 0 Wi 0
0 0 0 Vi
0 0 0 0
0 0 0 0
0 0 0 0

After some algebra, we find the coupled equations

(_m_Sl_SQ)Fl‘F(laO_‘/l)W1_183X2+182X3:O7
(11b)

(—m—81—85) F24(1dy— Vi ) W2 +i0; X ' —id;, X =0,
(11c)

Y=(ip,F' F2, F* W' W? W* X' X2 X% (9)
9, id, i3 0 0 0
i, 0 0 0 —ids 10,
0 id, 0 ids 0O —id,
0 0 iy —idy 10, O
-m 0 0 0 0 0
0 -m 0 0 0 0
0 0 -m 0 0 0
0 0 0 —m 0 0
0 0 0 0 —-m 0
0 0 0 0 0 -m
00000O0Y\]|/[ip
V0 000 0 Pt
0V, 000 0 F?
00V, 000 s
1

S, 000 00 W, (10)
05 000 0 W2
00S 000 w?
00085 00 X!
0000S5 0 X2
00000S8)/]\x®

‘ (_m_Sl_SQ)F3+(lao_‘/;)Wg_lazXl‘f'lale:O,
(11d)
01 6+(100—Vo— V) F'+-(—m—S)W'=0,  (lle)
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195 F' =10, F" +(—m—S,) X >=0, (11i)
—i0y F 419y F2 4 (—m—S,) X =0. (115)
Thus, we have
- —
(E-V)WHi(VxX)=(m+S8,+8)F,  (12b)
V o+ (E-V,—Vi) F = (m+5,)W, (12¢)
(VX F)=(m+S)X. (12d)

To our best knowledge, the latter has not been solved
in the general case and the existing papers are restricted
to special cases.

3 DKP equation in some special cases

It is clear that by choosing the S, =5,=V,=V,=0,
we have

(B2, \—m*) F+V*F =0, (13a)
Vi=—p?, (13b)
(Ei,m—mz—pQ)?:O. (13¢)

For the case of S;=5,=V,=0, we may write
(En‘l,)\(E.,L,l‘/\—‘/g)—mz)F)'i‘VzF):O. (14.)

The Hartmann ring-shaped potential is a special case of
the non-central potentials originally introduced in quan-
tum chemistry to explain the ring-shaped molecules like
benzene and has the form [24, 25]

A B

Vz(r,ﬁ):?—m, (15a)

with
A=2nc’aye, (15b)

and
B=n?c*ale,. (15¢)

The dimensionless parameters 1 and o are positive and
real. For the wave function, we introduce

F=TF (7,0,0)=R(7)Q(0)e™?, (16)
and rewrite the wave equation as
V2 (7,0,0)— B aVa F (7,0,0)
+(E2, ,—m?)F (F,0,0)=0. (17)

4 Energy eigenvalues and eigenfunctions

Expanding Eq. (17), we find

Ld(,d\ 1/ 1 d/. d
S \T T — [ ——( sinf—
r?dr dr /72 \sinf df de
1 d2 — A B N
r?sin*f d@z} " ( r o r2sin’ )
+(EZVI,A_m2)F'>:0_ (18)
The separation of variable yields
d®R(r) 2dR(r)
dr2? r dr
(Ei,z,x—m2)7“2—En,l,AAr—l(l—&-l)

r2

2 2
Qp = 27 04220, 0[320, §1=m _En,l,)\7 ggz—En‘l’)\A,

53 = l(l+1)7 Qy=—

1
_ 2 2
2 as=0, ag=m _En,l,)\7

1
Q7 = En,l,)\A7 04821‘”(“‘1)7 a9:m2_Ei,z,m

1
1+2 Z+l(l+1), ozu:2\/mz—7EZ,z,m
1 1 2 2
Q= _§+ Z+l(l+1)a algz—m, (20)

Compared with the appendix, the energy can be simply

found as
m{(2n+1)+2 <l+%>2}
wef e [()]

5 The angular section

Q
S
Il

En,l,)\::l: (21)

Let us now start to solve the angular section with the
governing equation
d?Q cos6dQ E,; 2 B-)\?
d#?  sinf do
By choosing the change of variable s = cosf, Eq. (22)
appears as

Q(O)+I(1+1)Q(0)=0. (22)

sin?6

d2Q —2s dQ
ds?  1-s%ds

E i xB=N+1(1+1)—1(14+1)s? -
(B ) g0,
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after a new transformation of the form z:% — %& be-
comes
d?Q 1-2z dQ
dz? + —2242 dz
%(EnMB—)\Q)—l(l+1)z2+l(l+1)z
+ Q(2)=0. (24)

24—223+422
By a simple comparison with the appendix, we find the
requisite parameters as
;= 17 0[2:2, 0[3:1, glzl(l+1)7 5221(1—’_1)7
1

53 = Z(AZ_ETL,Z,)\B)’ OL4ZO,O[5:O, O[GZZ(Z+1),

1 1
a7 = =1(141), 04821()\2—En,z,AB)7 049:1()\2—En,z,AB)7

ap = 1+ ()\2_E7L,l,/\B)J o =2+2 ()‘2_E7L,MB)7
1
Q12 = 5 ()\Q_E7L,l,/\B)7 q13=— ()\2_E7L,l,/\B)' (25)

Therefore, the angular part of the wave function is cal-
culated as

- ()" (o (52)

Xpn(amﬂ,(‘jx—lsl)—am*l) (1_2% <1—<;0s0)> ,

_ (213
2 (Ot'a)

where

Prgamfl,(%l) —a1o—1) <1—2a3 (1—;0s0)>

represents the Jacobi polynomials. Combining the above
equations, the energy spectrum can be determined as

1(I+1) = n?42/(N\2—E, B0 +n'+(\*~E, , ,B
+/XN2—E, ;,\B).

(27)

Therefore,

l:n'—l- )\Z—Enyl’/\B. (28)

Finally, we can write the total form of the considered
component as

Fnyl,A(F507<p)

_ (-3 oy e (V)

X ((21 /mQ—Eﬁyl’A)r) X (1_;059

(1+Cos0> (3V/02=Pn1B))
X

2

><%¢m>

\/(A27En,L,AB)7\/(A27En,L,)\B))

XP,S (cosf)e*?. (29)

6 Conclusion

In the present work, we have considered the DKP
equation in the presence of Hartmann ring-shaped po-
tential in (34+1)-dimensions for spin-one particles. The
eigenvalues and the eigenfunctions are calculated via the
NU technique. The eigenfunctions and energy eigenval-
ues, after proper facts and modifications are done, can be
as well used in meson spectroscopy, in the study of equi-
librium separation between the nuclei, decay properties
of the wave function, cross sections, interference pat-
terns, charge transfer, excitation effects, static multiple
polarizabilities of the interacting particles and various
static properties of mesons.

We wish to express our sincere gratitude to the referee
for his/her instructive comments and careful reading of
the article.
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Appendix A

We consider the following second-order differential equa-
tion whose form represents a general Schrédinger-type equa-
tion to obtain the parametric generalization of the NU
method [26, 27],

d*  ai—azs d 1 2
{@4—5(1—(138) £+ [s(1—ass)]? s +£28_£3]}

X (5)=0. (A1)
According to the NU method, the eigenfunctions are
Un(s) = sa12(1—a3s)7a127%
[eY 71,m7a -1
xp,S T e e )(1—2a35). (A2)

Where the Jacobi polynomial is,

) e +c n+d _
Pr(bc,d) — 9" n 1—2)""P (1 p
2 }j( S amar e
p=0
I(ndct+l) < n

pled) _

() n!F(n—f—c—i—d—i—l)TZ_O(r)
I'(ntctdtr+1) (2—1\"
_— =) . A

I'(r+c+1) ( 2 ) (43)
Where

ny_ n I'(n+1)
r | rl(n—r) T(r+0)T(n—r+1)

And the eigenenergies satisfy

azn—(2n+1)as+(2n+1) (Vas+as/as)+n(n—1)as

+ar+2asag+2v/agag=0. (A4)
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