
Chinese Physics C Vol. 38, No. 3 (2014) 037004

Optimization of the lattice function in the planar undulator applied

for terahertz FEL oscillators
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Abstract: Since the beta function of the electron beam within the undulator has a great influence on the power

gain of the free electron laser (FEL), optimization of the undulator lattice becomes important. In this paper, the

transfer matrix of the planar undulator is obtained from differential equations of the electron motion. Based on

this, the lattice function of the planar undulator in a terahertz FEL oscillator proposed by Huazhong University

of Science and Technology (HUST-FEL) is optimized and the expressions of the average beta function are derived.

The accuracy of the optimization result was confirmed well by the numerical method. The application range of this

analytical method is given as well. At last, the emittance growth in the horizontal direction due to the attenuation

of the magnetic field is discussed.
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1 Introduction

Pure permanent magnet (PPM) undulators are im-
plemented in FELs featuring a magnetostatics periodic
(sinusoidal) field in the longitudinal (z) direction. Driven
by the vertical magnetic field, electrons move in a sine-
like orbit and interact with the stored light wave, for
generating coherent radiations [1–5]. Large beta func-
tion within the undulator will enlarge the cross section
of the electron beam, which leads to a decrease of the cur-
rent density and finally decreases the single pass gain [6,
7]. On the other hand, too small beta function will lead
to the increase of both radiation diffraction and the the
equivalent energy spread derived from the betatron oscil-
lation, that finally increases the gain length [8, 9]. Since
the beta function of the electron beam in the undulator
has a great influence on the gain length [7], optimization
of the beta function becomes important for improving
the FEL performance.

In this paper, the transfer matrices in the horizon-
tal and vertical plane are obtained from the differential
equations of the electron trajectory, which are simpli-
fied by ignoring unimportant items and using equivalent
treatment. Based on the transfer matrices, the lattice
functions can be obtained. As a case study, the undula-
tor of HUST-FEL is optimized. The analyzed and opti-
mized lattice is from 0.1 meter in front of the undulator
to the place 0.1 meter behind the undulator. For val-

idation, the results derived by numerical methods are
displayed too.

The main beam and undulator parameters of HUST-
FEL are listed in Table 1 [10].

Table 1. Undulator and beam parameters of HUST-FEL.

beam energy/MeV 6–12

radiation wavelength/µm 40–150

normalized emittance/(πmm·mrad) 15

micro-pulse width/ps ∼5

bunch charge/pC ∼200

energy spread (%) 0.3

undulator period/cm 3.2

undulator period number 30

peak magnetic flux density/T 0.334–0.418

undulator parameter K 1.0–1.25

2 Transfer matrix in a planar undulator

2.1 Magnetic field distribution of the planar un-

dulator

For the analysis of beam transport characteristics, a
simple approximation is taken to determine the motion
of an electron in the periodic magnetostatic field of an
idealized planar undulator. For the regular period, it can
be shown that such a device yields a paraxial field with
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the following components [11]:
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4
[(2+δ)y2−δx2]
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sin(kuz)

Bz=−B0kuycos(kuz)

,

where B0 is the peak magnetic field value and ku is the
undulator’s wavenumber. The value of δ is the field de-
crease factor. The coordinate system is shown in Fig. 1.
As a special case, the field on the undulator middle plane
(y=0) can be expressed as:

By=−B0(1−κx2)sin(kuz). (1)

Where κ=δ
k2

u

4
.

Fig. 1. An idealized HUST-FEL undulator mod-
eled with RADIA [12]. The z-axis is the direction
of radiation and the x-axis is the direction of elec-
tron swing.

2.2 Derivation of the beam transfer matrices of

the planar undulator

2.2.1 Horizontal plane

Based on the magnetic field distribution (1), the
Lorentz force in the x-axis direction can be expressed
as:

fx≈−evzBy≈eβcB0sin(kuz)−eβcB0κx2sin(kuz).

Since vz�vy, the force evyBz is neglected and the equa-
tion of the electronic motion in the x-axis direction is
simplified as

(γme)
d2x

dt2
=(γme)(βc)

2 d2x

dz2
=fx. (2)

Where, Eq. z≈ βct has been taken.
Generally, the pole width of the undulator is designed

to be so wide that a large good field region can be guaran-
teed for the beam traveling through. It turns out that the
field attenuation (κx2) should be a tiny value. Therefore,

the differential Eq. (2) can be solved by a perturbation
method with a result of 0-order approximate solution
where the last item of the equation is neglected.

x(0)(z)=x0+x′

0z−

√
2au

γku

sin(kuz). (3)

Where au is known as the RMS undulator constant
and γ is the Lorentz factor. The 1st-order approximate
solution can be obtained by taking (3) back to the equa-
tion:

x(1)(z)=x(0)(z)+
1

3

a2
u
κ

γ2β
(3x0+x′

0z)z2. (4)

In solution (4), all small oscillating items are ne-
glected.

First, if the 0-order solution is considered for electron
motion, the transfer matrix is

M (0)
x

=

(

1 z

0 1

)

. (5)

This result implies that the undulator magnetic field
has no obvious effect on the beam and it acts just as a
segment drift space at the x-axis direction.

Second, if the 1st-order solution is considered as the
orbit electron, the beam transfer matrix becomes:

M (1)
x

=











1+
a2

u
κ

γ2β
z2 z+

1

3

a2
u
κ

γ2β
z3

2
a2

u
κ

γ2β
z 1+

a2
u
κ

γ2β
z2











. (6)

It can be inferred from matrix (6) that an undulator’s
magnetic field has a weak nonlinear defocus effect on the
beam. This effect will be enlarged for low energy beam
and longer undulator. In addition, the defocus effect is
proportional to the field decrease factor κ.

2.2.2 Vertical plane

The motion equation of the well-known betatron os-
cillation in the regular period region of undulator is [13]

(

d2

dz2
+ky

)

y=0.

Where ky =auku/γ and it is the wavenumber of the
beta oscillation. The beam transport matrix in the y-
axis direction is

My=





cos(kyz)
1

ky

sin(kyz)

−kysin(kyz) cos(kyz)



. (7)

The end part of the undulator has an effect on the
beam as well. In general, the end part of the undula-
tor is very short, and its influence on the beam can be
equivalent to a FODO (focusing-drift-defocusing-drift)
structure [14].

The vertical Lorentz force can be expressed as

fy≈−eBzvx∼Qy(z)y.

037004-2



Chinese Physics C Vol. 38, No. 3 (2014) 037004

Where Qy(z) is the focus coefficient.
As shown in Fig. 2, the distribution of the focus co-

efficient of the undulator in HUST-FEL is calculated a
numerical method, and the fringe field plays a defocus-
ing role while the end part of the field plays a focusing
role. The undulator equivalent transfer line is showed in
Fig. 3. Based on the principle of equivalent effect, the
transfer matrix of the end part can be given by:

MD=





1 0
1

0.0048γ2
1



, MF=





1 0

−
1

0.154γ2
1



,

MO=

(

1 0.033

0 1

)

.

In addition, there is a 0.1 m-long drift space at both
ends of the undulator. So, the transport matrix of the
end part is:

M =

(

1 0.1

0 1

)

MDMOMF.

Fig. 2. Distribution of the magnetic field on-axis
(upper) and the focus force coefficient (bottom).
The focus force coefficient is normalized. The
dashed line presents the average focus coefficient
of each segment.

Fig. 3. The undulator in HUST-FEL equivalent
transfer line (vertical plane). From 0.1 m in front
of the undulator to 0.1 m behind it is studied in
this paper. The effect of the fringe field and the
end part of the field can be equal to a defocusing
and focusing lens.

Till then, the beam transfer matrices of the undulator
are obtained completely. Based on them, optimization of
the lattice function will be discussed in the next section.

3 Optimization of lattice function

The purpose of lattice function optimization is to look
for an appropriate beta function to decrease the gain
length of the FEL, which is primarily related to the av-
erage value of the beta function [9, 15, 16]. As well, a
smaller beta function will contribute to a higher average
current density and an equivalent energy spread of the
electron beam [8, 15]. Owing to the fact that the par-
ticles in the beam all have different betatron oscillation
amplitudes, one obtains a fact not only a reduction in
the longitudinal speed but in addition, a smear which
is equivalent to the energy spread of the incident beam
occurs [8, 17].

(ση)
eq
≈

γ2ε

βavg

.

Furthermore, the fill factor σA which describes the
relative overlap of the electron beam and the radiation
field has a relation with the beta function [18, 19]

σA≈















Sopt

Sbeam

Sopt<Sbeam

Sbeam

Sopt

Sopt>Sbeam

.

Radiation diffraction possess a dominant factor in
gain length growth especially for long wavelength FELs,
due to comparable values between the beam cross sec-
tion and the radiation wavelength. Xie has presented the

Fig. 4. (color online) Gain length versus the av-
erage beta function for different radiation wave-
lengths. The best value is about 0.15 m (λr=
40 µm) and 0.06 m (λr=150 µm). They are
marked with a black triangle. The minimum av-
erage beta function value with natural focusing
is about 0.31 m (λr=40 µm) and 0.22 m (λr=
150 µm). They are marked with a circle and a
black square.
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theory of 3D gain length, which includes the influence of
the parameters of energy spread, diffraction and angular
spread [6].

For the HUST-FEL, the FEL simulation result based
on the Xie formula is shown in Fig. 4. It implies that the
best average beta function is about 0.15 m (λr= 40 µm)
and 0.06 m (λr=150 µm). Too large or too small value
will lead to an increase of the gain length. So the ap-
proach of optimization of the beta function is to adjust
the initial Twiss parameter aiming at the optimal value
of the beta function. In addition, the general principle
for beam matching should be considered too. 1) Beam
waist should be achieved at the center of the undulator,
with a symmetrical distribution of the beta function for
both directions; 2) minimum values of beta function and
small fluctuation within the undulator for strongly fo-
cusing vertical direction. The maximum beta function
should not be too large as well.

3.1 Horizontal plane

Set the initial Twiss parameter of the x-axis direction
as

Σx0=

(

γx0 αx0

αx0 βx0

)

.

When using the 0-order approximate solution, ac-
cording to Eq. (5), the beta function of the x-axis di-
rection can be expressed as

βx(z)=γx0
z2−2αx0

z+βx0
.

The average beta function of (0, zm) is

βx=
1

3
γx0z

2
m
−αx0zm+βx0.

Where zm is the transfer line length.
When the initial condition is

αx0=
√

3, βx0=2zm/
√

3, (8)

the average beta function βx reaches the minimum value
zm/

√
3. If the optimization object is that the maximum

of the beta function reaches the minimum value, the ini-
tial condition should be

αx0=1, βx0=zm.

Under this condition, the average beta function is
2zm/3 and the maximum of the beta function is zm. The
beta function curves for both cases are shown in Fig. 5.

3.2 Vertical plane

In the same way as with the horizontal plane, we set
the initial Twiss parameter of the vertical plane as

Σy0=





γy0 αy0

αy0 βy0



.

Fig. 5. (color online) Continuous line: beta func-
tion curves of optimization βmin (minimize the
average beta function). Dashed line: beta func-
tion curves of optimization βmmin (minimize the
maximum beta function).

Based on Eq. (7), the beta function of the beam in
the vertical plane can be presented as

βy (z) =

(

βy0

2
+

γy0

2k2
y

)

+

√

(

βy0

2
−

γy0

2k2
y

)2

+

(

αy0

ky

)2

sin[2kyz+ϕ].

Where the initial phase satisfies the equation:

ϕ=arctan

(

−
βy0k

2
y
−γy0

2αy0ky

)

.

Hence, the average beta function is

βy=

(

βy0

2
+

γy0

2k2
y

)

.

When the initial condition is

αy0=0, βy0=1/ky (9)

the average beta function reaches the minimum value
1/ky. At the same time, the beta function equals a con-
stant.

The maximum value of the beta function is

βymax=

(

βy0

2
+

γy0

2k2
y

)

+

√

(

βy0

2
−

γy0

2k2
y

)2

+

(

αy0

ky

)2

.

With the same initial condition, the maximum value
of the beta function reaches the minimum value also.

Based on the lattice analysis of the vertical and hor-
izontal plane, the minimum average beta function of the
beam can be expressed as:

β=

√

βx βy=

√

Nuλu√
3

γ

auku

. (10)

Based on Eq. (10), the minimum average beta func-
tion is about 0.31 m and 0.22 m when the beam energy
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is 12 MeV (λr=40 µm,) and 6 MeV (λr=150 µm). They
are larger than the best value calculated by Xie Ming’s
formula. Instead of the initial condition (8) and (9), the
average beta function will be larger and the gain length
increases too. So they will be selected as the optimized
initial Twiss parameter.

The optimal Twiss parameter at the start of the reg-
ular part is shown in Eq. (9), which has been obtained,
and thus

Σu=





ky 0

0
1

ky



.

So the Twiss parameter at 0.1 m in the front undu-
lator can be calculated by Eq. (11)

Σst=MΣuMT. (11)

4 Numerical simulations

In order to verify the accuracy of the results obtained
by the theoretical calculation from the derived transfer
matrix, a code was written to calculate the motion of
beams in the 3D magnetic field. If the field decrease fac-
tor is κ=30/m2 and the beam energy is 6 MeV, the beta
function in the x-axis direction curves of 0-order and
1st-order approximation, as well as the numerical solu-
tion, are shown in Fig. 6. The numerical result has been
validated by another code PTP [20]. Compared with 0-
order, the beta function obtained by 1st-order is more
consistent with that obtained by the numerical method.
Clearly illustrating the beta functions calculated by three
different methods at the point which is 0.1 meter away
from the exit of the undulator, are listed in Table 2. In
spite of 0-order transfer matrix imprecision, it can be
used to calculate and optimize the lattice unless the field
decreasing factor is too large.

Table 2. The beta functions at the point which is
0.1 m away from the exit of the undulator calcu-
lated by different methods.

method numerical 0-order 1st-order

βxout 1.347 1.248 1.337

When the beam energy is 6 MeV or 12 MeV, the
Twiss parameter at 0.1 m in front of the undulator can
be calculated based on Eq. (11).

Σst−6=

(

11.06 1.357

1.357 0.257

)

Σst−12=

(

5.698 0.6980

0.6980 0.2610

)

.

The curves of the beta function in the two cases are
shown in Fig. 7. They are both compared with the result

calculated by a numerical method too. The results by an-
alytical method in this paper and numerical method are
matched well. It is shown that the method in this paper
has high precision.

For beam energy in the region from 6 MeV to 12 MeV,
the beta functions calculated by the analytical method
are shown in Fig. 8.

Fig. 6. (color online) The beta function in the hor-
izontal plane curves of 0-order, 1st-order approx-
imation and numerical solution.

Fig. 7. (color online) The curves of beta func-
tion calculated by transfer matrix and numeri-
cal method when the beam energy is 6 MeV and
12 MeV.

Fig. 8. (color online) The beta functions calculated
by transfer matrix for beam energy from 6 MeV
to 12 MeV.
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5 Conclusions and discussions

The result calculated by the analytical method pre-
sented in this paper matches well with the numerical
method; this method is efficient for designing and opti-
mizing the lattice of the long wavelength FEL. The aver-
age beta functions obtained by this method can be taken
as eigenvalues to analyze the gain length and the small
signal gain of FEL. Besides, in a short wavelength FEL,
the focus or defocus force is weak in both the horizontal
and vertical direction due to the high beam energy. The
beam transport characteristics in two planes are closer
to the drift space. So, the method in this paper is not
suitable to design the lattice of a short wavelength FEL.

The expressions of the average beta function can be
regarded as optimal values and used to optimize other
parameters of FEL, such as undulator period, undulator

constant and so on.
In addition, the beam emittance increase in the hori-

zontal plane derived from non-linear defocusing need be
considered in an infrared FEL project. For HUST-FEL,
its field decrease factor is about κ=30/m2 [10]. When
the radiation wavelength is 0.3 mm, based on Eq. (6),
the magnitude of the emittance growth is about 10−2. In
order to ensure that the emittance does not exceed the
limitation of λr/4π, the decrease factor must be consid-
ered. When more precise calculation of the gain length is
demanded, the emittance growth needs to be considered
as well.

The physical design of the HUST-FEL undulator was
accomplished [10]. We signed a contract with Kyma
s.r.l., for the magnet design and manufacturing of this
planar PPM undulator; the final assemble with per-
formance test is expected to be finished at the end of
2013.
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