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Quantized space-time and its influence on two physical problems *
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Abstract: Based on Snyder’s idea of quantized space-time, we derive a new generalized uncertainty principle and

new modified density of states. Accordingly, we discuss the influence of the modified generalized uncertainty principle

on the black hole entropy and the influence of the modified density of states on the Stefan-Boltzman law.
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1 Introduction

Recently, considerable interest has been devoted to
the study of the generalized uncertainty principle (GUP)
[1–14]. The main consequence of the GUP is the exis-
tence of a minimal length scale of the order of the Planck
length, which can be deduced in string theory and other
theories of quantum gravity [15–22]. Although at present
this kind of minimal length has not been probed experi-
mentally, it is predicted from the form of the GUP or the
general commutation relation to exist theoretically. The
minimal length can provide a natural ultraviolet (UV)
cut-off. The GUP can also influence the structure of
phase space and modify the usual density of states to a
different form with a weighted factor. With the modified
density of states, one can calculate its effects on the cos-
mological constant and black body radiation [7] as well
as the entanglement entropy of black holes by means of
statistical mechanics [23].

As mentioned above, the existence of a minimum
length can be the result of generalized uncertainty prin-
ciple. In fact, one can also consider the problem in an
opposite direction. To deal with the trouble of quantum
field theory, Snyder [24] suggested that the usual four di-
mensional space-time may not be continuous but is dis-
crete or quantized. This means that there is a smallest
unit of length in space-time and the space-time should be
noncommutative. Based on the assumption of existence
of a minimal length and Lorentz invariance, Snyder intro-
duced some operators for position, momentum and angu-
lar momentum, and obtained a sequence of commutators
between them. This shows that the usual commutation
relation [X̂ ,P̂]=i and [X̂ ,X̂ ]=0 no longer exist. Accord-
ing to the commutators obtained by Snyder, we can also

derive a new GUP. In addition, one can also obtain the
modified density of states different from the one obtained
from the usual GUP. Thus, one can recalculate the in-
fluence of the new modified density of states on physical
quantities and laws, such as the cosmological constant,
black body radiation, the entanglement entropy of black
holes and so on. In particular, the minimal length in
Snyder’s model gives a natural UV cutoff in the calcu-
lation of entanglement entropy; thus, the UV divergence
caused by the infinite density near the horizon can be
removed.

This paper is arranged as follows. In the next section
we first introduce Snyder’s quantized space-time model,
and derive the GUP and modified density of states. In
the third section, we calculate its influence on the black
hole entropy and, especially, on the Stefan-Boltzmann
laws. We shall give some concluding remarks in the final
section.(c=~=G=kB=1).

2 Snyder’s quantized space-time and

GUP

Snyder developed the concept of quantized space-
time that is invariant under Lorentz transformation,
namely the quadratic form −η2=η2

0−η2
1−η2

2−η2
3−η2

4 should
be invariant under Lorentz transformation. The ηb,(b=0,
1, 2, 3, 4) are the homogeneous projective coordinates of
a real 4-dimensional space of constant curvature. From
another point of view, Snyder’s model can also be in-
terpreted as the Beltrami-dS model in momentum space
[25–27]. In particular, in Ref. [27] the authors describe a
duality between Snyder’s model and the de Sitter special
relativity on the basis of Yang’s model [28]. Snyder in-
troduces the space-time operator x̂µ(µ=0, 1, 2, 3), which
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can be defined as
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where a is the minimum length.
In addition, there are another two groups of opera-

tors:
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We know that Lorentz group has six generators, which
can be recorded as Mij(i,j=1, 2, 3) and M0i. The three

generators for rotation Li=
1

2
εijkMjk and the other three

generators for boost can be described as Mi=M0i. It is,
therefore, easy to get the commutator below:

[x̂i,x̂j ]=ia2M̂ij , [x̂0,x̂i]=ia2M̂0i. (4)

Obviously, if one takes the limit a → 0, the quantized
and noncommutative space-time will turn into the usual
continuous and commutative space-time. In fact, what
we really care about is the commutators below:

[x̂i,p̂j ]=i(δij+a2p̂ip̂j). (5)

This relation reminds us of the more general commutator
from GUP, which is [4]

[x̂i,p̂j ]=i(δij+λδij p̂
2+λ′p̂ip̂j). (6)

One can easily find out that the commutator Eq.(5) from
quantized space-time is a special case of the commutators
Eq. (6) from GUP, with λ=0 and λ′=a2.

In general, it is known that for any pair of observables
A and B, the uncertainty relation

∆A∆B>
1

2
|[A,B]|. (7)

In view of ∆A=A−Ā and (∆A)2=A2−A
2
, we can obtain

from Eq. (5) that

∆xi∆pj >
1

2
(δij+a2∆pi∆pj+γ), (8)

where γ is positive and dependent on the expectation
value of pi. We can name the GUP above as Snyder’s
GUP. If considering the i=j case only, the formula above
will turns into

∆xi∆pi>
1

2
[1+a2(∆pi)

2+γ], (9)

or

∆xi>
1

2

(

1+γ

∆pi

+a2∆pi

)

, (10)

which is similar to the frequently used GUP. Obviously,
when setting γ = 0, it will give a minimal uncertainty
length ∆x=a.

According to the usual Heisenberg uncertainty prin-
ciple, one can obtain the D dimensional phase space vol-
ume

dD
xdD

p. (11)

Upon quantization, the corresponding number of quan-
tum states per momentum space volume is

dD
xdD

p

(2π)D
. (12)

Considering the commutator Eq. (6) from GUP, the
number of quantum states changes to [6]

dD
xdD

p

(2π)D(1+λp2)D−1[1+(λ+λ′)p2]
1− λ′

2(λ+λ′)

. (13)

Thus, the number of quantum states for quantized space-
time should be

dD
xdD

p

(2π)D(1+a2p2)1/2
. (14)

In fact, its counterpart

dD
xdD

p

(2π)D(1+λp2)D
, (15)

which corresponds to λ′ = 0 in Eq. (13), is often con-
sidered by physicists. The difference between the two
forms lies in the weighted factor or, more precisely, on the
exponent there. The exponent in Eq. (15) is dimension-
dependent, whereas the one in Eq. (14) is a constant 1/2.
Thus, when the two forms of number of quantum states
are used in quantum field theory, one can deduce that
Eq. (15) can remove the divergence more effectively; es-
pecially, higher space dimensions will weaken divergence.
Be that as it may, the Eq. (14) should be employed if the
space-time is really discrete, as in Snyder’s proposition.
One can use the formula to recalculate many quantities,
like black body radiation, cosmological constant, etc.

3 The influence of two physical problems

3.1 Black hole entropy from Snyder’s GUP

Based on Snyder’s GUP (10) and set γ=0 for simpli-
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city, one can obtain
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We expand the expression above as Taylor series at a=0.
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We consider the saturated case only. For a Schwarzschild
black hole dA = 8πr+dr+ = 32πMdM and dM ≈ ∆p.
Thus,

dASNY ≈ 32πM∆p

=
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If taking ∆x=2r+=

√

A

π

, one can integrate the equation

to obtain:

ASNY=A+
πa2

4
lnA−

π
2a4

8A
−··· . (19)

Based on Bekenstein-Hawking area law S=A/4, one can
derive the corrected entropy

SSNY=
A

4
+

πa2

4
lnA−

π
2a4

8A
−··· . (20)

This result is consistent with the general entropy-area
relation of the type

S=
A

4l2p
+ρln

A

l2p
+O

(

l2p
A

)

. (21)

Until now the coefficient of the logarithmic correction
term ρ is controversial, whereas the first correction term,

which is represented as ρln
A

l2p
, is appropriate [29–33].

Eq. (20) indicates that the quantized space-time does
not influence the thermodynamic entropy of black holes,
obviously the leading term is still the celebrated A/4.

3.2 The modified Stefan-Boltzmann law

We discuss the black-body radiation and consider the
radiation field as a photon gas. In general, the quantum
states with momentum from p∼p+dp in volume V is

V

π
2 p2dp=

V

π
2 ω2dω, (22)

here we have considered the spin degeneracy of photons
and ε=ω=p1). The average quantum number should be

V

π
2

ω2dω

eω/T−1
. (23)

The internal energy of the photon gas is

U(ω,T )dω=
V

π
2

ω3dω
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, (24)

which is a Planck formula. By integrating the equation
above one can obtain
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which can give the usual Stefan-Boltzmann law.
Considering the quantized space-time, the density of

states is modified by Eq. (14). Thus, the internal energy
of the photon gas should be
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It is known that

∫
∞

0

xα−1dx

ex−1
=Γ (α)ζ(α), (27)

where Γ (α) and ζ(α) are the Gamma function and Rie-
mann zeta function, respectively. Because the minimal
length a should be very small, the series expansion at

a = 0 is appropriate. Thus, Eq. (26) can be calculated
exactly
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1) In Snyder’s quantized space-time model , the dispersion relation should be different from the usual one in Minkowski spacetime.
Here, we just take an approximation because we are considering a photon gas that has zero rest mass.
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The first term is the usual Stefan-Boltzmann relation
and the latter ones are correction terms. For the usual
Stefan-Boltzmann law, we know that there is a maxi-
mal frequency, x = ωm/T ≈ 2.82, corresponding to the
maximal internal energy. According to the modified ex-
pression of internal energy for the photon gas, we can
also find the maximal frequency ωmq. Given different
values of aT , one can find the maximal values of the
modified expression. Fig. 1 shows that bigger values of
aT will lead to smaller values of maximal frequency and
maximal internal energy.

Fig. 1. For the case of aT =0.1 the maximal value
lies at x=2.74, the case of aT =1 at x=1.88, and
the case of aT =10 at x=1.60.

4 Conclusion

According to Snyder’s idea of quantized space-time,
we derive the generalized uncertainty principle and modi-
fied density of states. The density of states obtained from
Snyder’s model is different from those of the usual GUP.
The weighted factor in the modified density of states is
1/(1+a2p2)1/2, with a constant exponent 1/2, whereas
the weighted factor from the usual GUP is 1/(1+λp2)D,

with a dimension-dependent exponent D. This difference
leads to different modifications to some physical prob-
lems. It should be noted that Snyder’s model is based
on de Sitter space, which is a kind of curved space. De-
spite the lack of consensus on the construction of phase
space in curved space-time, there is some tentative re-
search on this subject. Caianiello [34] has already pro-
posed a “game” that geometrizes quantum mechanics
by endowing phase space and metric, connection and
curvature. An interesting byproduct of the theory is
the existence of a maximal acceleration [35]. Another
method for constructing curved phase space is advanced
by Hazboun and Wheeler [36]. They employ the quo-
tient manifold method to obtain biconformal space with
symplectic form. Although both methods try to follow
Born’s reciprocity principle [37], they do not give an uni-
versal expression about the volume element of curved
phase space. Therefore, our work is based on the as-
sumption that the construction of phase space in Sny-
der’s model has a similar form to that in flat space.

Based on Snyder’s GUP, we calculate the modified
black hole entropy. The leading term in the result is the
celebrated Hawking-Bekenstein area formula. The first
correction term has a logarithmic form with the coeffi-

cient πa2

4 . This kind of logarithmic correction, which
can be obtained in string theory, loop quantum gravity
and other theories, is appropriate. However the exact
value of the coefficient is still controversial. The Stefan-
Boltzmann laws in thermodynamics may also need to be
modified because of the modified density of states. Ex-
cept for the usual ∼T 4 term, some correction terms also
exist. Considering the modified Stefan-Boltzmann laws,
the rate of a black hole’s radiation will be influenced and
the evolution of the universe should also be modified.
These problems will be discussed in another paper.
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