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Abstract: A QCD multiquark cluster system is studied in the relativistic harmonic oscillator potential model

(RHOPM), and the electromagnetic form factors of the pion, proton and deuteron in the RHOPM are predicted.

The calculated theoretical results are then compared with existing experimental data, finding very good agreement

between the theoretical predictions and experimental data for these three target particles. We claim that this model

can be applied to study QCD hadronic properties, particularly neutron properties, and to find six-quark cluster

and/or nine-quark cluster probabilities in light nuclei such as helium 3He and tritium 3H. This is a problem of

particular importance and interest in quark nuclear physics.
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1 Introduction

Particles that interact by strong interaction are called
hadrons. This general classification includes mesons and
baryons. Hadrons are viewed as being composed of
quarks, either as quark-antiquark pairs (mesons, with

meson ware function |M >=
1√
3
|qαq̄β >) where q stands

for quark state and α denotes its quantum numbers,
or as three quarks (baryons, with baryon ware function

|B>=
1√
6
εαβγ |qαqβqγ >). There is much more to the pic-

ture than this, however. In addition to the constituent
quarks being surrounded by a cloud of gluons, they ex-
change particles for the strong force [1].

The quarks which determine the quantum numbers of
hadrons are called valence quarks; apart from these, any
hadron may contain an indefinite number of sea quarks,
antiquarks and gluons, which do not influence its quan-
tum numbers. Here, we investigate only valence quark
cluster systems and do not consider the existence of sea
quarks and gluons.

Our present understanding of hadrons as extended
objects containing colored quarks and gluons suggests

that a nucleus might not always behave as a simple col-
lection of nucleons. Even in the loosely bound deuteron
there is a small probability that the nucleons are sep-
arated by a distance less than their radius. In such a
situation it seems reasonable that instead of talking of
two clusters of three quarks one should speak of a single
six-quark system [2]. Of course, if we were to decompose
the six-quark system into clusters they could be either
color singlets or octets [3]. A specific estimate of about
7% is obtained by theoretical models for the deuteron
form factor [4].

In short, strongly interacting composite particles can
be viewed as multiquark clusters. The deuteron is thus
made up of six quarks if the proton and neutron are over-
lapping; in the same circumstances, 3He is a system of
nine quarks.

Many studies have been done using conventional
methods for the form factors of strong interaction com-
posite particles. More recently, however, hadron form
factors in perturbative QCD and QCD-inspired models
have been studied [5, 6]. We work in the framework of a
relative harmonic oscillator potential model (RHOPM),
an N -valence quark cluster system where the quarks
move in a relativistic harmonic oscillator potential.

Received 27 March 2014, Revised 10 August 2014

∗ Supported by National Natural Science Foundation of China (11365002), Guangxi Natural Science Foundation for Young Researchers
(2013GXNSFBB053007, 2011GXNSFA018140), Guangxi Education Department (2013ZD049), Guangxi Grant for Excellent Researchers
(2011-54), and Guangxi University of Science and Technology Foundation for PhDs (11Z16)

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded
by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy
of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

013102-1



Chinese Physics C Vol. 39, No. 1 (2015) 013102

2 Form factors of multiquark bound

states

Closely following Ref. [7], we consider a system con-
sisting of N quarks moving in the field of a relativistic
harmonic oscillator potential. The corresponding wave
function can be represented in the form

ΨN
P (x1,x2,··· ,xN )=ÃΦN (x1,x2,··· ,xN )UN (~P ), (1)

where Ã is the quark antisymmetrization operator (in-
cluding the color degrees of freedom, which for simplic-
ity are not written), ΦN (x1, x2,··· , xN ) is the space-time

wave function, and UN(~P ) is the spin wave function de-
scribed below. We assume that the wave function ΦN

obeys the Klein-Gordon equation with a relativistic har-
monic oscillator potential [7]
{

N
∑

i=1

p2
i +κ2

[

N
∑

i>j

N−1
∑

j=1

(xi−xj)
2

]}

ΦN (x1,x2,··· ,xN )=0, (2)

where pi = −i∂/∂xi is a four-momentum and κ is the
oscillator parameter, xi being the four-coordinate of the
i-th quark. (We assume all quark masses are equal be-
cause of isospin invariance.) Changing to the center-of-
mass coordinates X and the internal variables r0 ··· rN−1,
and diagonalizing, one can represent Eq. (2) in the form

(P 2−M 2
p)ΦNq(r0,r1,··· ,rN−1,P )=0, (3)

M 2
p =−2αNa+

iµaiµ+const, (4)

αN =κN
√

N, (5)

where P is the total momentum of the system, Mp is the
mass of the system, and a+

iµ and aiµ are, respectively,
particle creation and annihilation operators. Under the
Takabayashi condition [8], necessary for removing non-
physical oscillations along the coordinate of relative time,
pµa+

iµΦNq =0, one gets the following solution

ΦNq(r0,r1,··· ,rN−1,P )

=
( αN

πN

)N−1

exp

(

αN

2N
Kµν

N−1
∑

i=1

riµriν

)

, (6)

and

ΦN (x1,x2,··· ,xN )=exp[ipµXµ]ΦNq(r0,r1,··· ,rn−1,P ), (7)

with Kµν = gµν−2pµpν/P 2. From Eq. (6), then, the
N -quark cluster wave function ΦNq , with the subsidiary
condition formulated by Takabayasi, can be written ex-
plicitly (n=N−1) as:

ΦNq =
( αN

πN

)n

exp

[

αN

2N

(

gµν−2
pµpν

M 2
Nq

)

(

n
∑

i=1

ri
µri

ν

)]

, (8)

where the plane wave part for the center-of-mass coordi-
nate has been dropped. It is well known that the wave

function ΦNq in Eq. (8) is characterized by the Lorentz
contraction effect.

The spin wave function UN (~P ) can be represented in
the form [9]

UN(~P )=B(~P )UN(0), (9)

UN(0)=

(

χ

0

)

,

B(~P )=exp

[

b

2|~P |
ρ1(~P ·~σ)

]

=exp[ρ1bH ], (10)

ρ1=

(

0 1

1 0

)

,

where χ is the non-relativistic spin function of the sys-

tem, H = (~P ·~σ)/2|~P |, b = cosh−1p0/Mp and ~σ =

N
∑

i=1

~σi,

with ~σi being the Pauli matrices of the i-th quark.
Based on Ref. [7], we write the electromagnetic action

in the form

Iem =

∫ N
∏

i=1

dxi

N
∑

k

jkµ(x1,x2,··· ,xN )Aµ(xk)

≡
∫
dXJN

µ (X)Aµ(X), (11)

with

jkµ(x1,x2,··· ,xN )

= −iΨN
p′ Nek

[

gE(q2)

−→
∂

∂xkµ

+igM(q2)σk
µν

( −→
∂

∂xkν

+

←−
∂

∂xkν

)]

ΨN
p . (12)

In Eq. (12), ΨN
p,(p′) is the initial (final) wave function

of the N -quark system as given in Eq. (1), ek is the
charge of the k-th quark, σk

µν are the spin matrices of
the k-th quark (σk

ij = εijlσ
k
l , σk

i4 = σk
4i = ρ1σ

k
i ), gE(q2)

and gM(q2) are quark charge and magnetic form factors,
and q = p′−p is the four-momentum transferred to the
N -quark system. Inserting the wave function ΦN from
Eq. (7) into Eqs. (11) and (12), and computing the in-
tegrals over the internal quark variables r0, ···, rN−1,
one derives the matrix elements of the effective current,
JN

k (0), for an N -quark system between momentum states
pµ (p′

µ) and spin component s(s′):

〈p′s′ |JN
µ (0)|ps〉= IN (q2)√

2p0p′

0

N
∑

k=1

(ŪN
s′ (p

′)Γk,µUN
s (p)), (13)

where

Γk,µ=ek[(pµ+p′

µ)IN (q2)gE(q2)−iNgM(q2)σk
µνqν ]. (14)
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Here the overlapping integrals over the space-time vari-
ables are the following:

IN (q2) =
1

(1+q2/2M 2
Nq)

N−1

×exp

[

−N−1

4αN

(

q2

1+q2/2M 2
Nq

)]

, (15)

IN (q2) =
1+Nq2/2M 2

Nq

1+q2/2M 2
Nq

. (16)

We now study the N -quark bound state. We can
write down the form factor of an N -quark cluster system
as

FNq(q
2) =

∫
Φ∗

Nq(r
1,...;PF )exp

[

−iq

n
∑

i=1

ui
1r

i

]

×ΦNq(r
1,··· ;PI)d

4r1 ···d4rn, (17)

where ui
1 is the first component of eigenvector ui subject

to the normalization condition

n
∑

i=1

|ui
1|2=

n

N
, (18)

and n=N−1 refers to the number of relative coordinates
of the constituent quarks in the multiquark system. Af-
ter elementary calculation using the operator defined by

ai
rµ=

1√
2αN

(√
Npi

rµ−i
αN√
N

ri
µ

)

, where αN =N 3/2k, and

Eq. (18), Eq. (17) takes the form

FNq(Q
2) =

1

[1+(Q2/2M 2
Nq)]

n

×exp

[

− n

4αN

Q2

1+(Q2/2M 2
Nq)

]

, (19)

where Q2=−q2.
For the two-quark cluster of the pion (N = 2), the

form factor can be written (n=N−1=1) as

Fπ(Q2)=

[

1+
Q2

2M 2
π

]

−1

exp









− 1

4απ

Q2

1+
Q2

2M 2
π









. (20)

Similarly, for the nucleon three-quark cluster (N =3),
the form factor can be expressed as

FN (Q2)=

[

1+
Q2

2M 2
N

]

−2

exp









− 1

2αN

Q2

1+
Q2

2M 2
N









. (21)

For the deuteron six-quark cluster system, once the
distance between the two composite particles (proton
and neutron) is less than their radius, the six-quark clus-

ter form factor can be written

FD(Q2)=
1

[1+(Q2/2M 2
D)]5

exp

[

− 5

4αD

Q2

1+(Q2/2M 2
D)

]

.

(22)

In Section 3, we compare our present theoretical re-
sults for the proton, pion and deuteron form factors with
the experimental data.

3 Comparison with experimental data

Figure 1 and Fig. 2 show our present calculated elec-
tromagnetic form factors for the proton and pion re-
spectively, compared with the corresponding experimen-
tal data [10–12]. As Figs. 1 and 2 show, there is very
good agreement between the theoretical and experimen-
tal data.

Fig. 1. Q2-dependence of nucleon form factor
FN (Q2) and comparison with experimental data
from Ref. [10].

Fig. 2. Q2-dependence of pion form factor Fπ(Q2)
and comparison with experimental data from
Ref. [11].

The intriguing question of whether quark degrees of
freedom play a noticeable role in understanding nuclear
events has, in recent years, provoked a number of inter-
esting works in that direction. The recent measurements
of electromagnetic form factor of the deuteron at large
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transferred momentum as well as the indication of the ex-
istence of the cumulative effect in relativistic nuclear col-
lisions [13] have poured new enthusiasm into attempts to
treat the nucleus as a system of quarks rather than nucle-
ons. Due to the lack of a consistent theory of quark con-
finement, most calculations in this field are made in the
framework of the MIT quark bag model. Here, we calcu-
late the deuteron electromagnetic form factor from the
N -quark relativistic harmonic oscillator potential model.

Figure 3 shows the fit to the deuteron scalar form
factor A(Q2) at high energies, where it should be pos-
sible to predict the six-quark cluster probability in the
deuteron wave function. Our predicted result for the
deuteron electromagnetic form factor F6q(Q

2)sin2(θ) is
approximately identical to the deuteron scalar form fac-
tor A(Q2) of the Rosenbluth separation at high energies,
where sin2(θ) is the probability of the six-quark cluster
component in the deuteron. Therefore, comparing the
theoretically calculated result F6q(Q

2)sin2(θ) with the
experimental data for A(Q2), we can get the value of

Fig. 3. Q2-dependence of deuteron form factor
FD(Q2) and comparison with experimental data
from Ref. [12]

sin2(θ). This is an interesting and important issue in
modern nuclear physics and hadron physics.

4 Conclusions

In this paper, we studied the electromagnetic form
factors of multiquark clusters in the RHOPM. Based on
the belief that strongly interacting composite particles
are made up of valence quarks, and assuming quarks
move individually within the relativistic harmonic oscil-
lator potential, we have calculated the electromagnetic
form factor of the proton, the pion and the deuteron in
the RHOPM. This model gives a fairly good simple de-
scription of these three particle structures provided only
one arbitrary parameter, gE(q2)=1.0, is applied. Agree-
ment with the corresponding experimental data is very
good for all three particles.

The study of electromagnetic form factors of hadrons
and nuclei has been a longstanding physical problem,
on which much research work has already been pub-
lished [13]. However, our theoretical investigations give
not only a simple analytical expression of electromag-
netic form factors of multiquark cluster systems, which
is very useful for practical investigations, but also the
results have pointed out a way to find six-quark and
nine-quark cluster probabilities in nuclei. For example,
comparing our calculated form factor for the deuteron
F6qsin

2(θ) at high energies with the Rosenbluth separa-
tion form factor A(Q2) gives the deuteron six-quark clus-
ter probability, sin2(θ), to be about 7%, since FD(Q2)=
Fnp(Q

2)cos2(θ) + F6q(Q
2)sin2(θ) and at high energies

F6q(Q
2)sin2(θ) = A(Q2). This model can easily be ex-

tended to other mesons and baryons, as well as any sys-
tem with a number of quarks larger than three, e.g. light
nuclei such as 3He and 3H. Needless to say, finding six-
quark and /or nine-quark probabilities in many-body nu-
cleon systems is an important and interesting issue in
nuclear physics which is helpful for the development of
quark nuclear physics.
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