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Shape phase transition in the odd Sm nuclei: effective order

parameter and odd–even effect *
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Abstract: Some binding energy related quantities serving as effective order parameters have been used to analyze

the shape phase transition in the odd Sm nuclei. It is found that the signals of phase transition in the odd Sm nuclei

are greatly enhanced in contrast to the even Sm nuclei. A further analysis shows that the transitional behaviors

related to pairing in the Sm nuclei can be well described by the mean field plus pairing interaction model, with a

monotonic decrease in the pairing strength G.
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1 Introduction

Quantum phase transitions in nuclei have attracted
a lot of attention from both experimental and theoreti-
cal perspectives [1–25], since they provide new insights
into understanding the evolution of nuclear properties.
The quantum phase transition is not of the usual ther-
modynamic type, but related to the equilibrium shape
changes in the ground state of nuclei at zero temper-
ature. It is thus also referred to as the shape phase
transition or ground state phase transition, though the
concept can also be applied to excited states. Evidence
of the shape phase transition in nuclei is indicated ex-
perimentally through a sudden change in the properties
of the ground state. An excellent example is provided
by a set of even Sm isotopes, of which the evolution of
its properties can be identified as the first-order shape
phase phase transition experimentally [22]. On the other
hand, odd-A nuclei can be approximately considered as
systems with an even–even core coupled to a single va-
lence nucleon. It is thus expected that the properties of
odd-A nuclei should be definitely affected by the shape
phase transition emerging along the related odd isotope
or isotone chains.

Currently, analyses of the phase transitions in nuclei
are mostly focused on even–even systems and have been
carried out in the frame of phenomenological geometrical
models of nuclear potential [1, 2], or algebraic models of
nuclear structure [25] since the phase transitions in the

intermediate and heavy mass region, such as the mass
number A ∼ 150 region, are often out of reach of the
microscopic shell models. In addition, phase transitions
in odd-A nuclei may be more difficult to describe due to
much more complicated dynamical situations [26] in con-
trast to the adjacent even–even species. However, if one
only wants to emphasize some special aspects of nuclear
phase transitions, the shell model (under some approxi-
mations) is still applicable to give a microscopic analysis
of the phase transition in the A∼150 region. The pur-
pose of this work is to give a microscopic analysis of the
shape phase transition in the odd Sm nuclei in terms of
the effective order parameters and odd–even effects.

2 Effective order parameter

One way of addressing quantum phase transitions is
to resort to the potential energy approach. To define
phase transitions in theory, it is convenient to consider a
schematic “Landau” potential [5] written as

V (β)=β2+x[(1−β2)2−yβ3], β>0, (1)

with two control parameters 0 > x > 1 and y > 0. This
kind of potential may be formally derived from the in-
teracting boson model [25], which has been widely used
to study quantum phase transitions in nuclei. It can be
proven that the system has a second order phase tran-
sition at x=xc =1/2 when y=0 because the minima of

Received 14 January 2015

∗ Supported by National Natural Science Foundation of China (11375005, 11005056, 11175078, 11405080)

1) E-mail: dlzhanghongxian@163.com
©2015 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

104103-1



Chinese Physics C Vol. 39, No. 10 (2015) 104103

V (β), Vmin, and
∂Vmin

∂x
are continuous, but

∂2
Vmin

∂x2
is dis-

continuous. More generally, the system will show a first
order phase transition as a function of x for any fixed
value of y > 0. For example, one can show that Vmin is

continuous but
∂Vmin

∂x
is discontinuous at x = xc = 1/3

when y=2, which indicates the first order phase transi-
tion occurring at xc. The potential (1) can be considered
as a simplified phenomenological nuclear potential sur-
face varying as the function of the deformation β, which
indicates that one could take βequilib=βe to be the order
parameter. As shown for the cases considered in Fig. 1,
the order parameter βe changes continuously as a func-
tion of x, with the first derivative being discontinuous
at xc = 1/2 if y = 0, corresponding to the second-order
phase transition, while βe jumps abruptly from 0 to 1 at

Fig. 1. The order parameter βe as a function of x

for y=0 and y=2, respectively.

xc = 1/3 when y = 2, corresponding to the first-order
phase transition. It seems that both βe and Vmin, which
may correspond to the ground state deformation and en-
ergy respectively, can be used to identify the shape phase
transition.

However, for real nuclei, things are considerably more
complicated partly because βe is not an observable. In
fact, instead of βe, the so called effective order parame-
ters [5] (observables sensitive to shape phase transitions
occurring within nuclei) are often used to identify nuclear
shape phase transitions and in some cases even determine
their orders. The typical effective order parameters in-
clude the isomer shifts defined as v=c[〈r2〉02

−〈r2〉01
] and

v′=c′[〈r2〉21
−〈r2〉01

] [5] with c and c′ being the scale pa-
rameters, the B(E2) ratio B(E2;(L+2)1→L1)/B(E2;21→
01) [16], and the energy ratio EL1

/E02
[27], etc. Most of

the effective order parameters are related to the quantum
numbers of excited states, which makes it particularly
difficult to use them to identify the phase transitions
in odd nuclei. In contrast, the binding energy related
quantities may serve as qualified effective order parame-
ters to identify the phase transitions in both even–even
and odd nuclei [17] since their values only depend on
the number of nucleons, and their experimental data are
also relatively abundant. On the other hand, the number
of nucleons in nuclei is finite and the phase transitional
behavior will be muted due to the finiteness of the sys-
tem [5]. Specifically, instead of a discontinuity, sudden
changes or flattening may be shown by the effective order
parameters in nuclear shape phase transitions [5, 22].

3 Two-neutron separation energy

For an atomic nucleus, the most basic characteristic
is nuclear mass or binding energy. The total binding en-
ergy B(Z,N) for a nucleus with proton number Z and
neutron number N is defined as [28]

B(Z,N)=ZMp+NMn−M(Z,N), (2)

where Mp is the proton mass, Mn is the neutron mass,
and M(Z,N) denotes the nuclear mass. In experiments,
data about the binding energy B(Z,N) is also abundant
in contrast to other observables. One may expect that
the shape phase transition in an isotope should be re-
flected by the evolution of the binding energy, which for
the Sm isotopes is shown in Fig. 2. However, the varied
energy scale of the total binding energy B(Z,N) in an
isotope chain is too large (∼102 MeV) so that the signals
of phase transition that are expected to appear around
N = 90 have been completely hidden behind the linear
behavior of B(Z,N) as shown in Fig. 2.

Thus one has to resort to other quantities related to
the binding energy in order to identify the shape phase
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Fig. 2. Total binding energy B(Z,N) for the Sm
nuclei (taken from Ref. [29]) shown as functions
of the neutron number.

transition in an isotope chain. For even–even nuclei,
the two-neutron separation energy S2n, which is defined
as [28]

S2n=B(Z,N)−B(Z,N−2), (3)

can be considered as a primary and direct signature of
the emergence of the shape phase transition [22, 24]. For
odd-A nuclei, S2n can also serve as a qualified effective
order parameter for identifying the ground phase transi-
tions [17]. For a set of isotopes, the two-neutron sepa-
ration energy S2n may be rewritten as a smooth contri-
bution that is linear with the number of valence neutron
pairs Np, plus a contribution from the deformation [26]

S2n=−A−BNp+S(2n)def , (4)

where A and B are the parameters. To emphasize the
occurrence of the phase transition in the Sm nuclei, the
experimental data of S2n for both the even and odd Sm
isotopes [17] are shown in Fig. 3, where the deforma-
tion contributions S(2n)def are also shown to reveal the
odd particle (single valence nucleus) effects on the phase
transition.

It is easy to know from Eq. (4) that the deformation
contributions S(2n)def can be obtained from the data
by subtracting a term linear with the number of valence
neutron pairs Np. Specifically, the results of S(2n)def are
obtained from the data [29] fitted with A=−19.8 MeV
and −19.4 MeV for the even and odd Sm nuclei respec-
tively, and B = 0.66 MeV according to (4). As clearly
seen from Fig. 3(a), a noticeable feature is the sudden
flattening near the neutron number N =90 shown by S2n

for the even Sm isotopes. Based on the analysis given in
[22], the sudden flattening indicates the first order phase
transition emerging in the corresponding isotopes. It is
even more interesting to find that a similar or even more
pronounced change appears in S2n for the odd Sm iso-
topes near N = 90, which indicates that the first-order
phase transition also occurs in these odd Sm nuclei. As

shown in Fig. 3(b), the phase transition occurring around
N =90 corresponding to Np =4 is explicitly manifested
in S(2n)def for both the even and odd Sm isotopes. Thus
Np=4 (N =90) may be considered as the critical point of
the phase transitions in the Sm nuclei. Particularly, the
phase transitional signal in the odd Sm nuclei seems to be
greatly enhanced by the odd particle effect. Specifically,
the amplitude of S(2n)def in the odd Sm nuclei increases
about 25% near the critical point in comparison to that
in the even Sm nuclei.

Fig. 3. (color online) The two-neutron separation
energies, S2n and their deformed part S(2n)def

for both the even and odd Sm nuclei are shown
along the isotopes chain. The experimental data
are taken from Ref. [29].

4 Odd–even mass difference and pairing

excitation energy

Besides the two-neutron separation energy S2n and
its deformed part S(2n)def , there exist some other
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binding-energy-related quantities that can serve as effec-
tive order parameters to identify the shape phase tran-
sitions in odd nuclei [17]. A novel transitional signal in
odd–even nuclei related to the binding energy B(Z,N)
is given as the odd–even mass difference [17], which is
defined as [28]

D=B(Z,N)−
B(Z,N−1)+B(Z,N+1)

2
. (5)

Meanwhile, it is also well known that the odd–even ef-
fects, such as those in the odd–even mass difference, pro-
vide the most important evidence of pairing in nuclei [28].
Therefore, some microscopic factors relevant to pairing
in manifesting the phase transition can be extracted from
the odd–even effects. To do that, a shell model Hamil-
tonian including the deformed mean field and pairing
interaction will be adopted to give a microscopic analy-
sis of the phase transition related to pairing in the Sm
nuclei. Specifically, the Hamiltonian is written as [28]

Ĥ=
∑

i

εi (a†
iai+a†

ī
aī)+

∑

i,j

Gij b†i bj , (6)

where εi represents the single-particle energy of the i-th
Nilsson level, and b†i =a†

ia
†

ī
(bi=aīai) is the pair creation

(annihilation) operator with ī labeling the time-reversed
state of that labeled by i. To solve such a Hamiltonian,
two approximation schemes are considered for the pair-
ing interaction in this work. One is the nearest-orbit
pairing-interaction model [30, 31], which is a simplified
version of the Gaussian-type pairing interactions suitable
for deformed nuclei [32] with the orbit-dependent pairing
strengths written as

Gij =α e−β(εi−εj)2 , (7)

where α < 0 and β > 0 are the adjustable parameters.
It is clear that the pairing strength Gij shown in (7)
is orbit-dependent, and the nearer the two orbits, the
stronger the pairing interaction between the two pairs.
As an approximation to the Gaussian-type interactions
given in (7), only the on-orbit pairing interactions Gii

and the nearest-orbit pairing interactions Gii+1 or Gii−1

are considered in the nearest-orbit pairing model, while
Gij with |i−j|>2 are ignored [30, 31]. As a further ap-
proximation, we set Gii =Gii±1 =G. Thus, there is only
one free-parameter G to be determined for each nucleus
in the isotopes. Such a pairing interaction form can be
exactly solved for all the Sm nuclei by directly diagonaliz-
ing the Hamiltonian in the valence nucleon space. More
details about the solutions of the nearest-orbit pairing
model can be found in Refs. [30, 31]. For convenience,
we denote the exactly solvable nearest-orbit pairing in-
teraction as the ENO scheme. Another approximation
scheme is the constant pairing interaction [28], in which
the paring strength is set as Gij = G for all the single-
particle orbits i. However, the constant pairing interac-

tions can be exactly solved only for a nucleus with very
few valence nucleons, due to the difficulty of computa-
tion. To apply the constant pairing interactions form to
the whole chain of the Sm isotopes, the well-known BCS
method [28] is used to solve the corresponding Hamilto-
nian. We denote the constant pairing interaction solved
by the BCS theory as the CBCS scheme.

By using the ENO and CBCS schemes, the odd–even
mass difference D for the Sm nuclei has been fitted by
the Nilsson mean-field plus the pairing model and the
resulting values together with the experimental data are
shown in Fig. 4. In theory, the odd–even mass difference
is given as

D=−Eg(Z,N)−
−Eg(Z,N−1)−Eg(Z,N+1)

2
, (8)

where Eg(Z,N) is the ground state energy solved from

Fig. 4. (color online) (a) The odd–even mass dif-
ference D for Sm nuclei with neutron number
N = odd fitted by the pairing model in the two
schemes; (b) the same as in (a) but for N=even.
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(6) for a nucleus with the proton number Z and the neu-
tron number N . In our calculations, the single-particle
energies {εi} are calculated from the Nilsson model with
deformation parameters taken from Ref. [33], which were
determined systematically from the corresponding ex-
perimental data [34]. In addition, it is assumed that
the odd–even mass difference in the Sm isotopes only
comes from the neutron part since the proton number in
a chain of isotopes is a constant. As is clearly seen from
Fig. 4(a) and (b), the experimental values of the odd–
even mass difference in Sm can be well reproduced in the
pairing model for both schemes. Specifically, the values
of the odd–even mass differences D are all negative for
the odd Sm nuclei but positive for the even Sm nuclei,
which indicates that even–even nuclei are more bounded
than the odd–even nuclei [28]. More importantly, the ev-
ident phase transition signals in experiments shown by
D, of which the values reach their minimum or maximum
around N =90, are nicely expressed by those calculated
from the pairing model. It is thus confirmed that the
pairing interaction is indeed a key factor in driving phase
transitions in nuclei.

Further, the fitted pairing strength G in the two

schemes is shown in Fig. 5. As shown in Fig. 5(a)
and (b), the resulting pairing strength G values in both
schemes show a monotonic decrease for the even Sm iso-
topes as the neutron number N increases, except that
the variational behavior of G in the ENO scheme is a lit-
tle smoother than that in the CBCS scheme. A similar
situation also appears in G for the odd Sm nuclei as seen
in Fig. 5(c) and (d). It is thus confirmed that the phase
transition behavior related to pairing in an isotope may
be driven by the pairing interaction with a monotonic
decrease in the pairing strength as the neutron number
increases. In addition, one may find that the energy scale
of G in the ENO scheme is almost ten times that in the
CBCS scheme, as seen from Fig. 5. It is not difficult
to understand this by considering the fact that only the
on-orbit and nearest-orbits’ pairing interaction are taken
into account in the ENO scheme for a single-particle or-
bit i, in contrast to the CBCS scheme. It seems that
the the transitional behavior of the odd–even mass dif-
ferences D can be well illustrated in theory via the shell
model Hamiltonian including only the mean-field plus
pairing interaction.

Fig. 5. (color online) The evolution of the pairing strength G changing as a function of neutron number.
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To further reveal the phase transitional behaviors
closely related to the pairing interaction, we also cal-
culated the pairing-excitation energy (PEE) [31], which
is also a quantity sensitive to the pairing strength G.
Since the angular momentum projection along the third
axis in the intrinsic frame is considered to be a conserved
quantity in the model, the pairing-excitation states de-
termined by the model are thus regarded approximately
as excited states with the same spin and parity as those of
the ground state of a nucleus. For example, the PEEs in
the model for even–even nuclei are considered as the en-
ergies of the excited 0+ state, E0+

n
. In Fig. 6, the results

of the first PEE calculated for the even Sm nuclei in the
two schemes and the corresponding experimental data
are shown. Notably, only the first neutron PEEs in the
two schemes are taken to be compared with the experi-
mental data since the proton PEE may be much higher
than the corresponding neutron PEE in the present case.
In the ENO scheme, the first PEE may be briefly denoted
as PEE = E1−Eg, where E1 and Eg represent the en-
ergy value of the first excited state and that of the ground
state respectively, since broken pairs have not been taken
into account in this scheme. In contrast, the first PEE
calculated from the CBCS scheme can be explicitly given
as

PEE=2
√

(ε0−λ)2+∆2, (9)

where λ represents the Fermi energy, ε0 denotes the
single-particle energy closest to λ, and ∆ is the so-called
gap parameter [28]. All the parameters involved in (9)
can be determined by the standard BCS theory [28]. As
is clearly seen in Fig. 6, the first PEE in experiments
also provides an evident phase transitional signal around
N = 90. More importantly, such a phase transitional
characteristic shown by the PEE can be well reproduced
by the results calculated from the pairing model in the
ENO scheme. It is thus further confirmed that the tran-
sitional characteristics in connection with pairing in the
Sm isotopes are indeed driven by the pairing interaction
with a monotonic decrease in the pairing strength. How-
ever, it can be also found that the PEE obtained from
the constant pairing interactions in the CBCS scheme are
much higher than those found experimentally, and the
global behavior of the PEE in theory is also completely
different from that in experiments. As a consequence,
the exact solutions are important to explore the phase
transition in the pairing model. It should be noted that
the PEEs in the odd Sm nuclei are not taken into ac-
count here because some single-particle excitations with
spin and parity the same as those of the ground state are
often involved in the low-lying spectrum, which makes it

difficult to pick out the PEE from the spectrum of the
odd Sm nuclei.

Fig. 6. (color online) The first pairing-excitation
energy calculated by the two schemes compared
with that determined by experiments [29].

5 Summary

In conclusion, we have made a microscopic analysis of
the shape phase transition in the odd Sm nuclei from the
point of view of the effective order parameter. Through
analyzing the two-neutron separation energy, it is con-
firmed that the first order phase transition also occurs in
the odd Sm isotopes as it does in the even Sm isotopes
but with the signals of the phase transition in the odd
species greatly enhanced by the odd neutron effect. It
is also shown that the odd–even mass differences may
reach their extreme value around the critical point, thus
serving as a valid effective order parameter for the iden-
tification of the shape phase transition in the odd Sm nu-
clei. Particularly, analysis based on the mean-field plus
pairing interaction Hamiltonian shows that the critical
phenomena relevant to pairing in the Sm nuclei can be
driven by the pairing interaction with a monotonic de-
crease in the pairing strength G. In addition, the results
also indicate that the exactly solvable models are impor-
tant to analyze transition characteristics related to pair-
ing in the excited states. Although the discussion in this
work provides a specific example of microscopic analysis
of the shape phase transition in odd-A nuclei, investi-
gations based on a more realistic shell model Hamilto-
nian with different truncation schemes [6, 35, 36] are still
needed to eventually confirm or disprove the theoretical
predictions.
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33 Möller P, Nix J R, Myers W D, Swiatecki W J. Atomic Data

Nucl. Data Tables, 1995, 59: 185–381
34 Audi G, Bersillon O, Blachot J, Wapstra A H. Nucl. Phys. A,

1997, 624: 1–124
35 ZHAO Y M, Yoshinaga N, Yamaji S, Arima A. Phys. Rev. C,

2000, 62: 014316
36 ZHAO Y M, Yamaji S, Yoshinaga N, Arima A. Phys. Rev. C,

2000, 62: 014315

104103-7


