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Mirror symmetry, D-brane superpotentials and Ooguri–Vafa

invariants of Calabi–Yau manifolds *
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Abstract: The D-brane superpotential is very important in the low energy effective theory. As the generating

function of all disk instantons from the worldsheet point of view, it plays a crucial role in deriving some important

properties of the compact Calabi–Yau manifolds. By using the generalized GKZ hypergeometric system, we will

calculate the D-brane superpotentials of two non-Fermat type compact Calabi–Yau hypersurfaces in toric varieties,

respectively. Then according to the mirror symmetry, we obtain the A-model superpotentials and the Ooguri–Vafa

invariants for the mirror Calabi–Yau manifolds.
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1 Introduction

The theory of topological strings, which is derived
from the two dimensional (N,N̂)=(2,2) superconformal
field theory, has developed considerably over the past
few years and has had a deep influence on mathemat-
ics. The D-brane superpotential, the generating func-
tion of correlation functions, is a particularly vital phys-
ical quantity which is a section of special holomorphic
line bundles of the moduli space from the mathematical
perspective. Through the superpotential we can derive a
series of important properties for the CY manifolds, such
as Yukawa couplings, Ooguri–Vafa invariants and so on.
Therefore the calculation of the superpotential is very
meaningful.

Some important properties of the moduli spaces for
various Calabi–Yau manifolds [1–3] have been well stud-
ied via the mirror symmetry which was first mentioned
in the local operator algebra of the N = 2 string the-
ory [4]. It is well known that mirror symmetry connects
two different moduli spaces which are respectively pa-
rameterized by Kahler geometry deformation and com-
plex geometry deformation in A- and B-models. In the
A-model there exist contributions from the instantons
while there are none in the B-model. So calculating the
superpotential directly in the A-model is rather difficult.
In fact only in several special cases do we know the corre-
sponding brane configuration on mirror A-model side for

a given brane configuration in the compact CY manifold
[5] derived from the GKZ system in the B-model. In the
GKZ system the superpotential is related to the period
integral, and the Hodge theoretic approach [6] provides
a useful insight into studying the period integrals for CY
manifolds which satisfies the Picard–Fuchs differential
equation, which is closely related to the GKZ system.

Recently, for compact CY manifolds, there have been
some great developments in calculating the quantum cor-
rected domain wall tensions on the CY threefolds via
open–closed mirror symmetry [7, 8]. The properties of
some compact Calabi–Yau manifolds have been studied
in Refs. [9–16]. In this note, we compute the D-brane su-
perpotentials for two non-Fermat CY threefolds in detail
via mirror maps and GKZ hypergeometric system.

The structure of this paper is as follows. In Sec-
tion 2 we describe the generalized GKZ hypergeometric
system. The solution of the GKZ hypergeometric sys-
tem is just the integral period. We also outline the ap-
proach to construct the corresponding polyhedron ∆ and
its mirror polyhedron ∆∗ for the Calabi–Yau manifold.
Then we review how to calculate the superpotential. In
Section 3 we analyze two non-Fermat type compact CY
manifolds in toric varieties, respectively, and compute
their superpotentials as well as some disk invariants with
the method referred to previously. The last section is the
conclusion.

Received 9 March 2015, Revised 14 July 2015

∗ Supported by Y4JT01VJ01 and NSFC(11475178)

1) E-mail: fzyang@ucas.ac.cn, Corresponding Author

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded
by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy
of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

121002-1



Chinese Physics C Vol. 39, No. 12 (2015) 121002

2 Toric geometry, relative period inte-

grals and the GKZ system

We divide this section into two parts to review some
related background.

2.1 Superpotential on the D-brane

In the presence of some background fluxes and space-
filling D-branes, type II string theory compactification on
the Calabi–Yau manifold gives rise to the N =1 low en-
ergy effective theories [13], whose effective superpotential
is captured by the relative period integral of the holo-
morphic three-form Ω(z) over the relative cycles with
boundaries wrapped by D-branes [17]. As is listed in
Refs. [18–22], the above integral is derived from the ac-
tion of a holomorphic Chern–Simons theory on the brane
which wraps the holomorphic curves.

For the D-brane wrapping internal cycles of Calabi–
Yau manifold X , the corresponding effective superpoten-
tial is [19]

Wbrane=

∫
X

Ω∧Tr

[

A∧∂̄A+
2

3
A∧A∧A

]

, (1)

where if there are N branes, A is a holomorphic U(N)
gauge connection on X and Ω is the holomorphic three-
form on X . For a type IIB string, the effective super-
potential is a linear combination of the relative period
integrals [21, 23, 25].

Wbrane(ϕ,ξ)=N̂aΠ̂
a(ϕ,ξ), (2)

where N̂a stands for the homology class, which is
wrapped with the D-brane. Π̂a(ϕ,ξ) represents the pe-
riod integral

Π̂a(ϕ,ξ)=

∫
γa(ξ)

Ω(ϕ). (3)

Here, ξ and ϕ stand for the open- and closed-string
moduli respectively. The internal background fluxes
H =HRR+HNS lead to an effective superpotential [13–
15, 26–29] which is defined by

WFlux=

∫
X

Ω∧H=

∫
X

Ω∧(HRR+τHNS), (4)

where Ω denotes the holomorphic three-form on the
Calabi–Yau manifold, and τ denote the complex cou-
plings for the type II string of the B-model. In this note,
we only consider the RR flux, so the induced superpo-
tential becomes

Wflux=

∫
X

Ω∧HRR=
∑

α

NαΠα(ϕ). (5)

Therefore the combined superpotential generated by the
D-brane and flux is [30, 31]

W(ϕ,ξ)=Wbrane(ϕ,ξ)+Wflux(ϕ)=
∑

NΣΠΣ(ϕ,ξ). (6)

Here the coefficient NΣ denotes both the D-brane topo-
logical charge and the RR flux quantum data and
ΠΣ(ϕ,ξ) denotes the integral of the three-form Ω(ϕ) over
the three-chains in the relative integer homology group,
which is defined by

ΠΣ(ϕ,ξ)=

∫
Γ α(ξ)

Ω(ϕ), Γ α(ξ)∈H3(Y,S,Z). (7)

The relative period integral referred to previously,
Π̂a(ϕ,ξ), is equal to the domain wall tension T (ϕ,ξ)
[5, 20, 21, 30, 31]. T (ϕ,ξ) is defined as

T (ϕ,ξ)=W(C+
(ϕ,ξ))−W(C−

(ϕ,ξ)). (8)

At its critical point ξ=z, T (ϕ,ξ) is identical to the on-
shell domain wall tension T =W (C+

ϕ )−W (C−
ϕ ). As shown

in Refs. [3, 8, 32, 33], at the critical points, the domain
wall tensions are considered as a normal function from
which the Abel–Jacobi invariants can be derived.

For the D-brane in the A-model, the superpotential
which is expressed in terms of the flat closed/open coor-
dinates can be calculated as the generating function of
the correlation functions [21, 30, 34–36]. It is defined by

W(t,t̂)=
∑

~k,~m

G~k,~mqd~kq̂d~m=
∑

~k,~m

∑

d

n~k,~m

qd~kq̂d~m

k2
. (9)

Here, q=e2πit, q̂=e2πit̂ and n~k,~m is the Ooguri–Vafa in-
variant. Mirror symmetry, which indicates that the two
superpotentials for D-branes in the A- and B-models,
are related to each other by the mirror map, gives us
a method to compute the Ooguri–Vafa invariant which
is closely related to the open Gromov–Witten invariant
G~k,~m, [5]. The superpotentials and the Ooguri–Vafa in-
variants are as follows [7, 37]:

W (±)(z(q))

ω0(z(q))
=

1

(2πi)2

∑

k∈odd

∑

d1>0,d2∈odd

n(±)
d1,d2

qkd1

1 qkd2/2
2

k2
,

(10)
where qa=eta (a=1, 2) and

ω0(z)=
∑

n

c(n)zn=
∑

n

∏

j
Γ
(

∑

a
l(a)0j na+1

)

∏

i
Γ
(

∑

a
l(a)i na+1

) zn. (11)

Here the mirror map ta is defined as ta=
∂aω0

ω0

.

2.2 Toric geometry and the GKZ System

The generalized hypergeometric system was first in-
troduced in Ref. [38], and soon developed quickly in
mirror symmetry [6, 39–42]. Let us define a mirror pair
of hypersurfaces (X, X∗) in two toric ambient spaces (V,
V∗), respectively. The toric varieties (V, V∗) are related
to the fans (Σ(∆), Σ(∆∗)) induced by the two dual poly-
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hedra (∆, ∆∗). The defining polynomial for the hyper-
surface is defined as:

P=

p−1
∑

i=0

ai

4
∏

k=1

X
v∗

i,k

k . (12)

Or we can write the above equation in another way

P=

p−1
∑

i=0

ai

∏

vj∈∆

x
〈vj ,v∗

i 〉+1

j . (13)

Here ai is complex parameter and Xk are inhomogeneous
coordinates on the open torus, xi is the homogeneous co-
ordinates.

The general integral period is expressed as

Π(ai)=
1

(2πi)4

∫
|Xk|=1

1

P

4
∏

k=1

dXk

Xk

. (14)

It is shown in Refs. [39, 40] that the period can be anni-
hilated by a GKZ hypergeometric differential system

DlΠ(a)=0 (l∈L), ZiΠ(a)=0 (i=0,1,···,p), (15)

the operators Dl and Zj are expressed as

Dl =
∏

li>0

(

∂
∂ai

)li

−
∏

lj<0

(

∂
∂aj

)−lj

, (l∈L), (16)

Zj =

p
∑

i=0

v̄∗
i,jθai

−βj . (j=0,1,··· ,n). (17)

The torus invariant algebraic coordinates za in the large
complex structure limit is [3]

za=(−1)la0
∏

j

a
laj
j , (18)

where la is the set of basic vectors which denote the gen-
erators of the Mori cone. Then, by θa = za∂za

, (2.16)
changes into

Dl=

l0
∏

k=1

(θ0−k)
∏

li>0

li−1
∏

k=0

(θi−k)−(−)l0za

−l0
∏

k=1

(θ0−k)
∏

li<0

−li−1
∏

k=0

,

(19)
where l is the linear combination of la. One can refer
to [32, 43–45] for more details. The result for the GKZ
system is described as

B{la}(za;ρa) =
∑

n1,···,nN∈Z+
0

Γ

(

1−
∑

a

la0(na+ρa)

)

∏

i>0
Γ

(

1+
∑

a

lai (na+ρa)

)

×
∏

a

z(na+ρa)
a . (20)

3 Study of two compact non-Fermat

type Calabi–Yau manifolds

In this section we will calculate the superpotentials
and disk invariants for two compact CY in the weighted
projective space, with the method described in Sec-
tion 2.

3.1 Calabi–Yau hypersurface X7(1, 1, 1, 1, 3)

X7(1, 1, 1, 1, 3) is a hypersurface in the weighted
projective space P

4(1, 1, 1, 1, 3). Let X denote this
hypersurface; then, its mirror manifold X∗ is denoted by
X∗=X̂/H , where X̂ represents the CY 3-fold X14(1, 2,

2, 2, 7) and H is defined by (hj
i )=

1

7
(1, 0, 6, 0, 0),

1

7
(1,

6, 0, 0, 0). So, X7(1, 1, 1, 1, 3) is isomorphic to X14(1,
2, 2, 2, 7), which had been checked in Ref. [46]. The
hypersurface X7(1, 1, 1, 1, 3) is defined as the zero locus
of the polynomial P .

P=x7
1+x7

2+x7
3+x7

4+x4x
2
5. (21)

The weighted projective space P
4(1, 1, 1, 1, 3) is a

toric variety, and the vertices of its corresponding poly-
hedron ∆ are as follows:

v1=(−1, −1, −1, 1), v2=(−1, −1, −1, −1),

v3=(−1, −1, 1, 0), v4=(6, −1, −1, −1),

v5=(−1, 1, −1, 0), v6=(−1, 3, −1, −1),

v7=(−1, −1, 3, −1), v8=(0, −1, 3, −1),

v9=(0, 3, −1, −1).

The vertices of the corresponding dual polyhedron ∆∗

are

v∗
1 =(−1, −1, −1, −3), v∗

2 =(1, 0, 0, 0), v∗
3 =(0, 1, 0, 0),

v∗
4 =(0, 0, 1, 0), v∗

5 =(0, 0, 0, 1), v∗
6 =(0, 0, 0, −1).

There exists only one integral point denoted as v∗
0=(0, 0,

0, 0) in ∆∗. For ∆∗, the charge vector of the Mori cone
is

l(1)=(−2, 0, 0, 0, 0, 1, 1), l(2)=(−1, 1, 1, 1, 1, 0, −3).

Consider the divisor

Q(D)=x7
3+z3x

7
4, (22)

at the critical point z3=1. Let

u1=−
z1

z3

(1−z3)
2, u2=z2, (23)

then according to (2.19) the GKZ system of the two-
parameters family become

D1 = θ̃1(θ̃1−3θ̃2)−(2θ̃1+θ̃2)(2θ̃1+θ̃2−1)z1, (24)

D2 = θ̃2
2(7θ̃2−2θ̃1)+4θ̃2

2(2θ̃1+θ̃2−1)z1

−7
3
∏

i=1

(2θ̃2−θ̃1−i). (25)
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The solution to this GKZ system is written as

Π1(u1,u2) =
c

2
B{l̃}

(

u1,u2,0,
1

2

)

, (26)

Π2(u1,u2) =
c

2
B{l̃}

(

u1,u2,
1

2
,
1

2

)

. (27)

At the critical point z3 = 1, the on-shell superpotential
satisfies W +

C =W−
C according to the Z2 symmetry. So the

on-shell superpotential is described as

W±(z1,z2)=
1

2πi

∫±√
z3

ξ0

Π(z1,z2,ξ
2)

dξ

ξ
|z3=1. (28)

For this model the on-shell superpotentials are expressed
as

W±
1 =∓

c

8

∑

n1,n2>0

Γ

(

2n1+n2+
3

2

)

zn1

1 z
n2+ 1

2

2

Γ (n1+1)Γ

(

n1−3n2−
1

2

)

Γ

(

n2+
3

2

)4 ,

(29)

W±
2 =∓

c

8

∑

n1,n2>0

Γ

(

2n1+n2+
5

2

)

z
n1+ 1

2

1 z
n2+ 1

2

2

Γ

(

n1+
3

2

)

Γ (n1−3n2)Γ

(

n2+
3

2

)4 .

(30)
The flat coordinates in the A- and B-models are con-

nected via the mirror map ta=
∂aω0

ω0

. The mirror map is

as follows:

t1 = log(z1)+2z1+3z2
1+

20

3
z3
1+68z2

1z2−10z1z2

+2z2−15z2
2+66z1z

2
2+

560

3
z3
2+o(z3), (31)

t2 = log(z2)−6z2+45z2
2−560z3

2−198z2
2z1+30z2z1

+9z1−204z2z
2
1+

43

2
z2
1+62z3

2+o(z3), (32)

and the corresponding inverse mirror map is

z1 = q1−2q2
1+3q3

1−2q1q2+5q1q
2
2+36q2

1q2+o(q4), (33)

z2 = q2+6q2
2+9q3

2−9q1q2−120q1q
2
2+37q2

1q2+o(q4). (34)

According to (2.10) we can derive the Ooguri–Vafa in-
variants from the on-shell superpotentials. The results
are listed in the following Tables (Table 1, Table 2).

3.2 Calabi–Yau hypersurface X9(1, 1, 2, 2, 3)

X9(1, 1, 2, 2, 3) is a hypersurface defined in the
weighted projective space P

4(1, 1, 2, 2, 3). Let X de-
note the corresponding Calabi–Yau three-fold; then, its
mirror manifold X∗ is denoted by X∗=X̂/H , where X̂
represents the CY 3-fold X12(1, 1, 3, 3, 4) and H is de-

fined by (hj
i ) =

1

9
(1, 8, 0, 0, 0), 1

4
(1, 0, 3, 0, 0). So,

X9(1, 1, 2, 2, 3) is isomorphic to X12(1, 1, 3, 3, 4). The
polyhedron ∆ for this model has the vertices

v1=(−1, −1, −1, 2), v2=(−1, −1, −1, −1),

v3=(−1, −1, 2, 0), v4=(8, −1, −1, −1),

v5=(−1, 2, −1, 0), v6=(−1, 3, −1, −1),

v7=(−1, −1, 3, −1), v8=(0, −1, 3, −1),

v9=(0, 3, −1, −1)

then the dual polyhedron ∆∗ has vertices

v∗
1 =(−1, −2, −2, −3), v∗

2 =(1, 0, 0, 0), v∗
3 =(0, 1, 0, 0),

v∗
4 =(0, 0, 1, 0), v∗

5 =(0, 0, 0, 1), v∗
6 =(0, −1, −1, −1).

There exist no points inside the polyhedron ∆∗ but the
original point v∗

0=(0, 0, 0, 0). We define the hypersurface
X9(1, 1, 2, 2, 3) as the zero locus of the above polynomial
P .

P=x9
1+x9

2+x1x
4
3+x2x

4
4+x3

5, (35)

Table 1. n
(1,+)
d1,d2

d1�d2 1 3 5 7 9 11
0 −2 2 −10 84 −858 13820
1 28 −28 252 −2828 36400 −729130
2 70 112 −2702 42910 −714140 17644120
3 0 252 16716 −391580 8645280 −262033434
4 0 6832 −83286 2543170 −74112654 2741674588
5 0 84364 315980 −13445796 496350736 −22527070394

Table 2. n
(2,+)
d1,d2

d1�d2 1 3 5 7 9 11
1 0 0 0 0 0 0
3 −70 0 0 0 0 137970
5 −28 56 −140 896 −8008 −5747938
7 2 −792 3164 −27608 315050 108056554
9 0 −38962 −32424 391104 −5784408 −1230725514
11 0 −84364 358288 −3814860 68819744 10291361734
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l(1)=(−3, −1, −1, 1, 1, 0, 3), l(2)=(−1, 1, 1, 0, 0, 1, −2)

are the generators of the Mori cone related to this model.
Consider the divisor

Q(D)=x9
1+z3x

9
2, (36)

at the critical point z3=1. Let

u1=−
z1z3

(1−z3)2
, u2=−

z2

z3

(1−z3)
2, (37)

according to (2.16) the GKZ system for the two-
parameters family become

D1=θ̃2(θ̃2−θ̃1)
2−(3θ̃1+θ̃2)(3θ̃1−2θ̃2+2)(3θ̃1−2θ̃2+1)z2, (38)

D2 = (θ̃2−θ̃1)
2−(θ̃2−θ̃1)(3θ̃1−2θ̃2)+4θ̃1(3θ̃1−2θ̃2)

+3z1(3θ̃1−2θ̃2)(3θ̃1−2θ̃2−1)−16z1(θ̃2−θ̃1)
2

−48z1z2(3θ̃1+θ̃2+1)(3θ̃1+θ̃2+2)

−48z1z2(3θ̃1+θ̃2+1)(3θ̃1−2θ̃2). (39)

The solution to this GKZ system is written as

Π1(u1,u2)=
c

2
B{l̃}

(

u1,u2,
1

2
,0

)

, (40)

Π2(u1,u2)=
c

2
B{l̃}

(

u1,u2,
1

2
,
1

2

)

. (41)

Similarly, in this model the on-shell superpotentials sat-
isfy W +

C = W−
C according to the Z2 symmetry. So the

superpotentials are described as

W±(z1,z2)=
1

2πi

∫±√
z3

ξ0

Π(z1,z2,ξ
2)

dξ

ξ
|z3=1. (42)

At the critical point z3 =1, on-shell superpotentials are

expressed as

W±
1 = ∓

c

8

∑

n1,n2>0

Γ

(

3n1+n2+
5

2

)

Γ

(

−n1+n2+
1

2

)2

Γ

(

3n1−2n2+
5

2

)

×
1

Γ (n2+1)Γ

(

n1+
3

2

)2 z
n1+ 1

2

1 zn2

2 , (43)

W±
2 = ∓

c

8

∑

n1,n2>0

Γ (3n1+n2+3)

Γ (−n1+n2+1)2Γ

(

3n1−2n2+
3

2

)

×
1

Γ

(

n2+
3

2

)

Γ

(

n1+
3

2

)2 z
n1+ 1

2

1 z
n2+ 1

2

2 . (44)

The mirror map is

t1 = log(z1)+30z1z2−3z2+252z1z
2
2−10z3

2

+927z2
1z

2
2+288z1z23−

105

4
z4
2+o(z4), (45)

t2 = log(z2)+2z2+3z2
2+

20

3
z3
2+74z1z2−168z1z

2
2

−192z1z
3
2+8853z2

1z
2
2+

35

2
z4
2+o(z4), (46)

and the corresponding inverse mirror map is

z1=q1+3q1q2+3q1q
2
2+q1q

3
2−30q2

1q2−594q2
1q

2
2+o(q4), (47)

z2=q2−2q2
2+3q3

2−4q4
2−74q1q

2
2+390q1q

3
2+o(q4). (48)

Analogous to computing the disk invariants of the X7(1,
1, 1, 1, 3), we have the results listed in the following
Tables (Table 3, Table 4).

Table 3. n
(1,+)
d1,d2

d1�d2 0 1 2 3 4 5

1 2 18 2 2 2 2

3 0 0 1584 −710 −626 −616

5 0 0 0 38018 208244 49382

7 0 0 0 0 1745190 111219514

9 0 0 0 0 0 90081018

11 0 0 0 0 0 −94519326

Table 4. n
(2,+)
d1,d2

d1�d2 1 3 5 7 9 11

1 16 0 −2 −2 −2 46

3 0 −80 2208 608 584 26332

5 0 0 720 158784 −4120 3039542

7 0 0 0 −8848 15904928 94908448

9 0 0 0 0 126608 3473058320

11 0 0 0 0 0 −434510208
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4 Conclusion

The D-brane superpotential plays a crucial role in
both physics and mathematics. From the physical point
of view, it determines the vacuum of the low energy N=1
effective theory. From the A-model worldsheet view-
point, it is the generating function of the Ooguri–Vafa
invariants of the Calabi–Yau manifold and the subman-
ifold which is wrapped by the D-branes in the A-model.
These Ooguri–Vafa invariants are closely related to the
number of BPS states. From the mirror geometric view-
point, it is the integral period which is the solution to
the generalized GKZ system. It is very hard to calculate
directly the D-brane superpotential for compact Calabi–
Yau manifolds in the A-model because these superpo-
tentials are essentially non-perturbative, and are impos-
sible to obtain in the perturbative or localization ways
which are important methods to compute the D-brane
superpotential in non-compact Calabi–Yau manifolds in
the A-model. An effective approach to obtain the D-
brane superpotential is using the blown-up geometry of
target space along the submanifold wrapped by the D-
branes [9, 47]. The alternative approach to compute the
superpotential of the D-brane in compact Calabi–Yau
manifolds in the A-model is via the algebraic geometric

method and mirror symmetry.
In this paper, we extend the generalized GKZ sys-

tem in a Fermat Calabi–Yau three-folds to the compact
non-Fermat Calabi–Yau three-folds which have been less
studied so far in contrast to the Fermat type Calabi–Yau
three-folds. We first constructed the generalized GKZ
system for the compact non-Fermat type Calabi–Yau
manifolds, then worked out the corresponding D-brane
superpotential in the mirror B-model by the algebraic
geometric method. The superpotential in the A-model
was obtained according to mirror symmetry. Finally the
Ooguri–Vafa invariants were extracted from the A-model
superpotential.

These superpotentials have potential phenomenolog-
ical applications. Furthermore, according to the type
II string/M-theory/F-theory duality, in the weak decou-
pling limit gs→0, these superpotentials of Type II strings
give the Gukov–Vafa–Witten superpotentials WGVW of
F-theory compactified on the dual fourfold. On the other
hand, since there is not yet a systematic mathematical
method to compute them, it is difficult to get from other
approaches, those Ooguri–Vafa invariants predicted in
this paper. Those Ooguri–Vafa invariants provide some
concrete data which could potentially be checked by an
independent mathematical calculation.
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