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Study of different features of fission dynamics of 224Th produced in

fusion reactions within a stochastic approach
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Abstract: The evaporation residue cross section anisotropy of the fission fragment angular distribution, pre-scission

neutron multiplicity and the pre-saddle and post-saddle contributions of the pre-scission neutron multiplicity were

analyzed within a stochastic approach based on one-, two- and three-dimensional Langevin equations for the com-

pound nucleus 224Th formed via a complete fusion. In these calculations, dissipation was generated through the

chaos weighted wall and window friction formula. Comparison of the theoretical results with the experimental data

showed that three-dimensional Langevin equations with dissipation generated through the chaos weighted wall and

window friction formula make it possible to reproduce satisfactorily the above-mentioned experimental data.
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1 Introduction

More than half a century after the discovery of fis-
sion, the study of fission is still of general interest. The
dynamics of fission can be simulated in terms of the mul-
tidimensional Langevin equations or multidimensional
Fokker-Planck equation (see, for example Refs. [1–14]).
The multidimensional Langevin equations and multidi-
mensional Fokker-Planck equation have been extensively
and rather successfully used to solve many problems of
collective nuclear dynamics in such reactions as fusion
fission, induced fission, heavy ion collisions, and quasi-
fission (see [10–13] and references therein). The multi-
dimensional Fokker-Planck equation can be solved only
using approximate methods, while numerical solution
of the multidimensional Langevin equations is possible
without almost any approximations. The Langevin dy-
namics was first used simultaneously by Abe et al. [12]
and then by Fröbrich and Gontchar (see their 1998 re-
view [13] and references therein). More recently a review
article has been proposed by Zagrebaev and Greiner [14].

One of the most important inputs to the Langevin
dynamical calculations is the dissipative property of the
nucleus. At present there are several models for dissipa-
tion but they give dependencies which are very different
from each other. For example, the model of two body dis-
sipation [15] predicts a decrease of dissipation with tem-
perature as T−2, whereas the linear response theory [16,
17] predicts that dissipation increases with temperature,
but does not change much with the collective variable.

On the other hand, there are certain indications that
the nuclear dissipation is deformation dependent. In pa-
per [18], the authors considered deformation dependence
for the nuclear dissipation and analyzed the experimen-
tal data on the pre-fission multiplicity of neutrons, light
charged particles and γ quanta in heavy-ion induced re-
actions. In the above-mentioned paper [18], the nuclear
dissipation coefficient was assumed to be constant up
to the saddle point, and that it would sharply increase
between saddle and scission points; also many authors
considering analysis of the different aspects of nuclear
fission assumed a constant nuclear dissipation [19–21].

In this paper, we use the chaos weighted wall and win-
dow friction formula in one-, two- and three-dimensional
Langevin equations to simulate the dynamics of nuclear
fission of the excited compound nucleus 224Th formed
in the heavy-ion induced reaction 16O+208Pb. We also
reproduce experimental data on the anisotropy of the fis-
sion fragment angular distribution, the pre-scission neu-
tron multiplicity, the pre-saddle and post-saddle contri-
butions of the pre-scission neutron multiplicity and the
evaporation residue cross section for the compound nu-
cleus 224Th.

The present paper has been arranged as follows. In
Section 2, we describe the model and basic equations.
The results of calculations are presented in Section 3.
Finally, the concluding remarks are given in Section 4.

2 Details of the model

The three-dimensional Langevin model which was
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developed in Refs. [3–5] is used to simulate the dynam-
ics of the fission of 224Th nucleus formed in heavy ion-
induced fusion reaction 16O+208Pb. The nuclear shapes
can be described in terms of well-known {c,h,α} param-
eterization [22]. In the present investigation, we use a
different asymmetry parameter [4] scaled with elonga-
tion α′=αc3. The parameter c describes the elongation
of a nucleus. The parameter h determines the change in
the neck thickness at a given elongation, while the coor-
dinate α specifies the mass ratio for would-be fragments.
In cylindrical coordinates the surface of the nucleus is

given by:
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where z is the coordinate along the symmetry axis and ρs

is the radial coordinate of the nuclear surface. In Eq. (1)
the quantities B and As are defined by:
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where erf(x) is the error function.
The evolution of a nucleus undergoing fission is con-

sidered within the stochastic approach. The evolution
of the collective coordinates can be treated by analogy
with the motion of a Brownian particle placed in a vis-
cous heat bath [23, 24]. The heat bath in this picture
represents the rest of all the other nuclear degrees of free-
dom which are assumed to be in thermal equilibrium.
In our calculations, we use the set of coupled Langevin
equations

q̇i = µijpj ,

ṗi = −1

2
pjpk

∂µjk

∂qi

−∂F

∂qi

−γijµjkpk+θijξj , (4)

where q = (c,h,α′) are the collective coordinates, p =
(pc,ph,pα′) are their momenta conjugates, mij(‖µij‖ =
‖mij‖−1

) is the tensor of inertia, F (q)=V (q)−a(q)T 2 is
the Helmholtz free energy, V (q) is the potential energy,
γij is the friction tensor, θijξj is a random force, θij is
its amplitude and ξj is a random variable that possesses
the following statistical properties

〈ξi〉=0, 〈ξi(t1)ξj(t2)〉=2δijδ(t1−t2). (5)

The random force amplitudes are related to the dif-
fusion tensor Dij by the equation Dij = θikθkj . The
diffusion tensor in turn satisfies the Einstein relation
Dij = Tγij . The heat bath temperature T used in the
calculations is determined within the Fermi-gas model
as T =

√

Eint/a(q), where Eint is the intrinsic excitation
energy of the nucleus and a(q) is the level-density pa-
rameter. The deformation dependence of the level den-
sity parameter is frequently represented in the form of
the expansion [25]

a(q)=avA+asA
2/3Bs(q), (6)

where A is the mass of the fissile nucleus, and Bs is the di-

mensionless functional of the surface-energy in the liquid-
drop model. In the present study, we employ the coeffi-
cients av=0.073 MeV−1 and as=0.095 MeV−1, proposed
by Ignatyuk and his co-authors in Ref. [25]. During a
random walk along the Langevin trajectory, conserva-
tion of energy is satisfied by

E∗=Eint(t)+Ecoll(q,p)+V (q)+Eevap(t), (7)

where E∗ is the total excitation energy of the nucleus,
Ecoll is the kinetic energy of the collective motion of
the nucleus, which is determined by the formula Ecoll =
1/2µij(q)pipj , V (q) is the potential energy of the com-
pound nucleus, and Eevap(t) is the energy carried away by
evaporated particles by time t. The potential energy is
calculated on the basis of the liquid drop model with al-
lowance for the finite range of nuclear forces [26, 27]. The
inertia tensor is calculated in the Werner-Wheeler ap-
proximation for the incompressible and irrotational flow
[28].

For small elongation before neck formation, we use
the chaos weighted wall formula to calculate the fric-
tion tensor and after neck formation, we use the chaos
weighted wall and window friction formula [29].

γij =
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µ(q)γwall
ij ,

for nuclear shapes featuring no neck

µ(q)γwall
ij +γwin

ij ,

for nuclear shapes featuring a neck

(8)

The chaoticity µ is a measure of chaos in the single
particle motion and depends on the shape of the nucleus.
In the classical picture this can be given as the average
fraction of the nucleon trajectories which are chaotic and
is evaluated by sampling over a large number of classical
trajectories for a given shape of the nucleus. Each such
trajectory is identified either as a regular or a chaotic one
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by considering the magnitude of its Lyapunov exponent
and the nature of its variation with time [30]. The mag-
nitude of chaoticity µ changes from 0 to 1 as the nucleus
evolves from a spherical to a deformed shape. γwall

ij and
γwin

ij can be written as in [29, 31]. For nuclear shapes
featuring no neck
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and for nuclear shapes featuring a neck
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where ρm is the mass density of the nucleus, v̄ is the av-
erage nucleon speed inside the nucleus, zmin and zmax are
the left and right ends of the nuclear shape, zN is the
position of the neck plane that divides the nucleus into
two parts, D1, D2 are positions of mass centers of the
two parts of the fissioning system relative to the center
of mass of the whole system, R is the distance between
centers of mass of future fragments, ∆σ is an area of the
window between two parts of the system and V1 is the
volume of one of the would-be fragments. It should be
mentioned that the second term in Eq. (11) takes into
account the nucleon flux through the neck connecting the
two parts of the fissile nucleus.

Figure 1 shows the components of the friction-tensor
as the function of elongation parameter c from the
ground state of the fissioning system to its scission along
the mean dynamical trajectory. It can be seen that com-
ponents of the fraction tensor have a smooth behavior.

It should be mentioned that in our dynamical cal-
culations the mean dynamical trajectory is obtained by
averaging over a trajectory ensemble. In this case the
Langevin equations coincide with the generalized Hamil-
ton equations, since the term responsible for fluctuations,
the random force, drops out after averaging. The initial
conditions were chosen at the saddle point with α′=0 and

pα′ =0 similar to the ground state. Therefore, while the
compound nuclei 224Th evolve from the saddle point to
the scission point, the average values of the mass asym-
metry parameter and the conjugate momentum are iden-
tically equal to zero. Consequently, the mean dynamical
trajectories lie in the α′ = 0 plane or (c,h) plane. The
components γcα′ and γhα′ are equal to zero in the case
α′=0.

Fig. 1. The nuclear deformation dependence of
the friction tensor components along the mean
dynamical trajectory for the compound nucleus
224Th as functions of the elongation parameter c.

The Langevin trajectories are simulated starting from
the ground state with the excitation energy E∗ of the
compound nucleus. In the course of evolution of a com-
pound nucleus from the ground state to the scission point
along a Langevin trajectory, we take into account the
evaporation of light pre-scission particles n, p, α, γ by
means of a Monte Carlo procedure. The decay widths
for emission n, p, α, γ are calculated at each Langevin
time step ∆t as in Refs. [32, 33]. The emission of a
particle is allowed by asking at each time step along the
trajectory whether the ratio of the Langevin time step
∆t to the particle decay time τpart is larger than a ran-
dom number ξ(∆t/τpart〉ξ(06ξ61)), where τpart=~/Γtot

and Γtot=
∑

v
Γv. The probabilities of decay via different

channels can be calculated by using a standard Monte
Carlo cascade procedure where the kind of decay is se-
lected with the weights Γv/Γtot with (v=n, p, α, γ). Af-
ter emission of a particle of kind v the kinetic energy εv of
the emitted particle is calculated by hit and miss Monte
Carlo procedure. Then the intrinsic excitation energy of
the residual mass and spin of the compound nucleus are
recalculated and the dynamics are continued. The loss
of angular momentum is taken into account by assuming
that each neutron, proton, or γ quantum carries away
1~ while the α particle carries away 2~.

If the Langevin trajectory has not fissioned and has
not been counted as an evaporation residue event after
a delay time, when stationary flux over the saddle point
is reached, we stop the dynamical calculation and switch
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over to the statistical description with a Kramers type
fission decay [34].

We obtain average values of the pre-scission particle
multiplicity by using the following relation:

〈O〉=

I=Icr
∑

I=0

α′=α′

f
∑

α′=0

〈O〉I,α′ (2I+1)PI

∑

I,α′

(2I+1)PI

, (12)

where Icr and α′
f are the critical spin and maximum

asymmetry parameter for fusion, respectively. The quan-
tity PI is the probability of a particle crossing the fission
barrier. This is obtained as the ratio of the number of
the trajectories crossing the barrier for given α′, I and
the total number of trajectories chosen.

In the present paper, we use the standard transition
state model [35–37] to analyze the fission fragment angu-
lar distributions. This model assumes that there is a cer-
tain transition configuration for a fissile system that we
can use to determine the angular distribution of the fis-
sion fragments. There are two assumptions on the posi-
tion of the transition state and consequently we can con-
sider two variants of the transition state model. These
models are the saddle point transition model (SPTS)
[35–37] and the scission point transition model (SCTS)
[38–40]. Important assumptions of the saddle point tran-
sition model are: 1) the mean time of stay of a nucleus
in the saddle point region is sufficiently larger than a
characteristic time of equilibration of the K mode; 2) the
mean time of descent of a nucleus from the saddle to scis-
sion is short in comparison with the characteristic time
of the equilibration of the K mode; 3) a Gaussian distri-
bution can be considered for K, the projection of I onto
the symmetry axis of the nucleus, in the saddle point.
In analyzing the fission fragment angular distributions,
it is usually assumed that fission fragments travel in the
direction of the symmetry axis of the nucleus. Conse-
quently, the fission fragment angular distributions can be
determined by three quantum numbers: I, M, K, where
I is the spin of a compound nucleus, M is the projection
of I on the axis of the projectile ion beam, and K is the
projection of I on the symmetry axis of the nucleus. In
the case of fusion of spinless ions, we have M = 0. At
fixed values of I and K, the angular distribution can be
determined as follows:

W (θ,I,K)=(I+1/2)
∣

∣dI
M=0,K(θ)

∣

∣

2
, (13)

where dI
M,K(θ) is the Wigner rotation function defined

in [35], and θ is the angle between the nuclear symmetry
axis and the beam axis. At high values of I,W (θ,I,K)
can be approximated as

W (θ,I,K)≈ I+1/2

π
×

[

(I+1/2)2sin2θ−K2
]1/2

, (14)

The experimental observed angular distribution of fis-
sion fragments can be calculated by averaging expression
Eq. (13) with the distributions of I and K as follows:

W (θ)=

∞
∑

I=0

σI

I
∑

K=−I

P (K)W (θ,I,K), (15)

where σI and P (K) are the distributions of compound
nuclei with respect to the spin and its projection, respec-
tively. In order to calculate the angular distributions of
compound nuclei, it is necessary to specify the type of
the distributions σI and P (K) of the compound nuclei
over I and K, respectively. In the saddle point transition
state model, an equilibrium distribution of K values is
assumed which is determined by the Boltzmann factor
exp(−Erot/T ) [37] at the saddle point. Therefore, the
equilibrium distribution with respect to K has the form

Peq(K)=
exp(−K2/(2K2

0))
I

∑

K=−I

exp(−K2/(2K2
0 ))

, (16)

The variance of the equilibrium K distribution K0 is

K2
0 =

T

~2
Jeff , Jeff=

J‖J⊥

J⊥−J‖

, (17)

where T , J‖, and J⊥ are the nuclear temperature and
the parallel and perpendicular moments of inertia which
were calculated at the saddle point. We can obtain an
expression for the angular distribution for a fixed I at
preset K0 by averaging Eqs. (13) and (14) with respect
to Peq(K) as follows:

W (θ,I) = (I+1/2)

I
∑

K=−I

∣

∣dI
0,K(θ)

∣

∣exp(−K2/2K2
0)

I
∑

K=−I

exp(−K2/2K2
0 )

≈
√

2p

π

exp(−p sin2θ)J0(−p sin2θ)

erf(
√

2p)
, (18)

where J0 is a Bessel function of zero order and p =
(I+1/2)2/(4K2

0). The anisotropy of the fission fragment
angular distribution is given by

A=
〈W (00)〉
〈W (900)〉 . (19)

In the case P �1 the anisotropy of the fission fragment
angular distribution is given by the approximate relation

〈W (00)〉
〈W (900)〉 ≈1+

〈I2〉
4K2

0

. (20)

It should be stressed that an expression similar to
Eq. (18) can be used in a scission point transition model,
but factors determined by Eq. (17) should be calculated
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at the scission point, and it is assumed that the char-
acteristic time of equilibration of the K mode is much
shorter than the descent time from the saddle to the scis-
sion point. In this case the equilibration of the K degree
of freedom is supposed to be at the scission point.

There are three factors that determine the angular
distribution: the effective inertia moments, the nuclear
temperatures at the transition states and the initial spin
distribution of the compound nuclei.

Assuming complete fusion of the projectile with the
target, the spin distribution of the compound nucleus
can be described by the formula

dσ(I)

dI
=

2π

k2

2I+1

1+exp

(

I−Ic

δI

) , (21)

where Ic is the critical spin and δI is the diffuseness.
The parameters Ic and δI can be approximated by the
following relations [13]:

δI=



















(APAT)3/2×10−5 [1.5+0.02(Ec.m.−Vc−10)]

for Ec.m.>Vc+10

(APAT)3/2×10−5 [1.5−0.04(Ec.m.−Vc−10)]

for Ec.m.<Vc+10,

(22)

and

Ic=
√

APAT/ACN(A1/3
P +A1/3

T )

×(0.33+0.205
√

Ec.m.−Vc), (23)

when 0 < Ec.m.−Vc < 120 MeV; and when Ec.m.−Vc >
120 MeV the term in the last bracket is put equal to 2.5.
In Eqs. (22) and (23), Vc is the Coulomb barrier and AT,
AP and ACN represent the mass of the target, projec-
tile, and the compound nucleus, respectively. The initial
spin of the compound nucleus can be obtained by sam-
pling the above spin distribution function. Fig. 2 shows
the calculation results for the partial cross sections as
a function of spin for 16O+208Pb. It can be seen from

Fig. 2. The partial cross sections as a function of
spin for 224Th.

Fig. 2 that at higher center-of-mass energy of the projec-
tile the compound nucleus is formed with a larger value
of spin.

3 Results and discussion

In this paper, we use a stochastic approach based on
Langevin equations to calculate the anisotropy of the fis-
sion fragment angular distribution, the pre-scission neu-
tron multiplicity, the pre-saddle and post-saddle con-
tributions of the pre-scission neutron multiplicity and
the evaporation residue cross section for the compound
nucleus 224Th formed in the fusion reaction 16O+208

Pb. We use both one-, two- and three-dimensional
Langevin equations in our calculations to calculate the
above-mentioned experimental data. To calculate the
anisotropy of the fission fragment angular distribution,
we use the saddle point transition model [35–37] and
the scission point transition model [38–40]. In one-
dimensional Langevin calculations, we use only the elon-
gation parameter c and the collective coordinates h and
α′ are set to zero, and in two-dimensional Langevin cal-
culations, we use the elongation parameter c and the
collective coordinate h, and α′ is set to zero. It should
be noted that in order to calculate the anisotropy of the
fission fragment angular distribution, an accurate pre-
diction of particle multiplicity is necessary. Therefore,
in the present investigation, we considered the deforma-
tion effects [41] for calculating the particle emission in
our calculations. If we do not consider the deformation
effects, we cannot accurately reproduce the experimen-
tal data on the anisotropy of the fission fragment angular
distribution for 224Th. It should be mentioned that au-
thors in Ref. [41] provided a comprehensive discussion

Fig. 3. The anisotropy of fission fragment angular
distribution for 224Th calculated with the one-
two-, and three-dimensional Langevin equations
in the framework SPTS and SCTS model, respec-
tively. The calculated values are connected by
dotted lines to guide the eye. The experimental
data (open symbols) are from Refs. [42–45].
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about the deformation effects on the pre-scission par-
ticles multiplicity. Fig. 3 shows the results of the
anisotropy of the fission fragment angular distribution
along with the experimental data for 224Th.

It is clear from Fig. 3 that the predictions of the scis-
sion point transition model for the anisotropy of the
fission fragment angular distribution, calculated with
the three-dimensional Langevin equations for 224Th, lie
higher than the experimental data and the values ob-
tained according to the saddle point transition model.

In order to obtain further insight about the fission
dynamics of 224Th, we show in Fig. 4 the mass distri-
butions at saddle and scission points calculated with the
three-dimensional Langevin equations in the framework
of the SPTS and SCTS models.

Fig. 4. Mass distribution of fission fragments
of 224Th obtained from the three-dimensional
Langevin equations at saddle point (filled
squares) and scission point (open squares).

It should be stressed that in the reproduction of the
experimental data on the anisotropy of the fission frag-
ment angular distribution for 224Th, we consider the par-
ticle emission. It should be mentioned that Froebich and
Rossner [46] were the first people to use the Langevin-
type model to study the influence of pre-saddle particles
on the anisotropy of the fission fragment angular distri-
bution, and pointed out its importance for interpreting
the anisotropy data, in particular at high energy.

Figure 5 shows the results of the anisotropy of the
fission fragment angular distributions calculated in the
framework SPTS model for 224Th with the one-, two-
and three-dimensional Langevin equations without con-
sidering the particle emission. It is clear from Fig. 5
that the results of the three-dimensional Langevin equa-
tions for the anisotropy of the fission fragment angular
distribution lie somewhat below the experimental data.

It can be seen from Figs. 3 and 5 that the values of
the anisotropy of the fission fragment angular distribu-
tion calculated in the framework SPTS model with the
one-, two and three-dimensional Langevin equations are

very close at smaller excitation energies, though at higher
excitations energies, the predictions of three-dimensional
Langevin equations are higher than those obtained with
the one-, and two-dimensional Langevin equations and
consequently are in better agreement with the experi-
mental data. The difference between predictions of the
one-, two- and three-dimensional Langevin equations can
be explained as follows: in the one-dimensional case
there is only one transition state for each spin, in con-
trast to the two- and three-dimensional case where the
ensemble of transition points exist, and also the mean
nuclear temperature at the saddle or scission points are
different from each other in the one-, two- and three-
dimensional Langevin calculations. It should be men-
tioned that the nuclear temperature at the saddle point
or at the scission point is tightly bound with the mean
pre-saddle or pre-scission neutron multiplicity and conse-
quently with the nuclear dissipation. The results of pre-
scission neutron multiplicity, the pre-saddle and post-
saddle (saddle to scission) contributions (νgs and νss re-
spectively) of the pre-scission neutron multiplicity cal-
culated for 224Th with the one- and three-dimensional
Langevin equations are shown in Fig. 6. It can be seen
from Fig. 6 that the pre-scission neutron multiplicity
values calculated with the one- and three-dimensional
Langevin equations are close at smaller excitation ener-
gies, though at higher excitation energies the predictions
of three-dimensional Langevin equations are lower than
those obtained with the one-dimensional Langevin equa-
tions and consequently are in better agreement with the
experimental data.

Fig. 5. Same as Fig. 3, but without considering
the particle emission.

It is also clear from Fig. 6 that the post-saddle con-
tribution at low excitation energies is very small, but
increases at higher excitation energies. In order to ob-
tain further insight into the dynamics of fission, we also
calculate the percentage yield of the pre-scission neutron
multiplicities as a function of the elongation parameter
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c for the compound nucleus 224Th at excitation energy
equal to 80 MeV.

Figure 7 shows the results of the percentage yield of
the pre-scission neutron multiplicities for 224Th calcu-
lated with the three-dimensional Langevin equations. It
is clear from Fig. 7 that an appreciable part of the pre-
scission neutron is evaporated from the nearly spherical
compound nucleus at an early stage of fission process
before the saddle point is reached.

Apart from the above-mentioned arguments, it can
be mentioned that in the one-dimensional case, the fis-
sioning system can oscillate only in the fission direction,
and the energy is transferred only between the elongation
degree of freedom and the heat bath. But in the three-
dimensional calculations the energy can be transferred
not only between the elongation variable and the heat
bath, but also between the elongation variable and the
other collective variables. The combination of all these

Fig. 6. The calculated pre-scission neutron multi-
plicity pre-saddle and post-saddle contributions
of the pre-scission neutron multiplicity for 224Th
at different excitation energies. The experimental
data (filled circles) are from refs. [47, 48].

Fig. 7. Percentage yield of the pre-scission neutron
multiplicities as a function of the elongation pa-
rameter c for 224Th at an excitation energy equal
to 80 MeV.

effects leads to the differences between the one-, two- and
three-dimensional calculations seen in Figs. 3, 5 and 6.

We also calculated the energy dependencies of the
evaporation residue cross section, σER, for 224Th with the
one- and three-dimensional Langevin equations. Fig. 8
shows the energy dependencies of σER for 224Th.

It can be seen from Fig. 8 that the evaporation
residues cross section values calculated with the one-
and three-dimensional Langevin equations are different
from each other and the predictions of three-dimensional
Langevin equations are lower than those obtained with
the one-dimensional Langevin equations. It is also clear
from Fig. 8 that the results of the three-dimensional
Langevin equations are in better agreement with the ex-
perimental data.

Fig. 8. The evaporation residues cross section
calculated with the one- and three-dimensional
Langevin equations. The calculated values are
connected by dotted lines to guide the eye. The
experimental data (open symbols) are from Refs.
[42, 49].

4 Conclusions

The anisotropy of the fission fragment angular dis-
tribution, the pre-scission neutron multiplicity, the pre-
saddle and post-saddle contributions of the pre-scission
neutron multiplicity and the evaporation residue cross
section have been calculated for the compound nu-
cleus 224Th formed in heavy ion-induced fusion reaction
16O+208Pb based on one-, two- and three-dimensional
Langevin equations.

In our calculations, we used the chaos weighted wall
and window friction formula in the Langevin equations
to reproduce the above mentioned experimental data.
Comparison of the theoretical results with the exper-
imental data show that the anisotropy of the fission
fragment angular distribution and the mean pre-scission
neutron multiplicity calculated with the one- and three-
dimensional Langevin equations are very close at smaller
excitation energies, though at higher excitation energies
the predictions of three-dimensional Langevin equations
are in better agreement with the experimental data.
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Furthermore, the results of the calculations of the evap-
oration residue cross section for 224Th indicate that the
three-dimensional calculations give lower values than in
the one-dimensional case, and consequently are in better
agreement with the experimental data. According to
the obtained results, it can be concluded that the neck
thickness and asymmetry degrees of freedom decrease
the pre-scission neutron multiplicity and the evapora-
tion residues cross section, and increase the anisotropy
of the fission fragment angular distribution. It should
be mentioned that the authors in Ref. [3] have applied

the surface-plus-window dissipation with reduction coef-
ficient 0.256ks60.5 and analyzed experimental data of
the different features of the fission of excited compound
nuclei. In other words, the authors in Ref. [3] assumed
the reduction coefficient as a free parameter in their cal-
culations, but, in the present investigation, we did not
consider any free parameters to reproduce experimental
data.
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