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Modified fusion probability by reflection boundary *
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Abstract: We investigate the time-dependent probability for a Brownian particle passing over the barrier to stay at

a metastable potential pocket against escaping over the barrier. This is related to the whole fusion-fission dynamical

process and can be called the reverse Kramers problem. By the passing probability over the saddle point of an inverse

harmonic potential multiplying the exponential decay factor of a particle in the metastable potential, we present an

approximate expression for the modified passing probability over the barrier, in which the effect of the reflection

boundary of the potential is taken into account. Our analytical result and Langevin Monte-Carlo simulation show

that the probability of passing and against escaping over the barrier is a non-monotonous function of time and its

maximal value is less than the stationary result of the passing probability over the saddle point of an inverse harmonic

potential.
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1 Introduction

Metastable system decay can be applied widely to
describe various science problems such as chemical reac-
tion kinetics, phase transition, nuclear fission, and so on.
The well-known Kramers problem is such a process that
a Brownian particle subjected to thermal fluctuation es-
capes from the barrier of a metastable potential. As early
as 1940, Kramers published his seminal paper “Brown-
ian motion in force fields and chemical reaction diffusion
model” [1], in which he proposed a formula for the reac-
tion rate constant for a general-damped particle escaping
from a metastable potential well and used this model to
explain the mechanism of excited nuclear fission. The
problem of the nuclear fission rate was studied from the
point of view of Brownian motion by Wu et al. [2, 3].
Abe is the first researcher who used a Langevin Monte-
Carlo simulation to numerically calculate the nuclear fis-
sion rate [4]. In 1990, Hänggi et al. [5] summarized the
works fifty years after Kramers, including various im-
provements and extensions for the Kramers rate theory.
Then, the description of fusion of heavy and heavy-ion-
induced fission in the frame work of Langevin equations
was reviewed by Fröbrich and Gontchar in 1998 [6]. Ye
et al. [7] probed the nuclear dissipation with particle
multiplicity in heavy-ion-induced light fissioning systems
which was described by the Langevin equation expressed

by entropy in 2014.
Now a reverse problem appears timely, i.e., a Brow-

nian particle with initial velocity passes over the saddle
point to enter into the well of a metastable potential and
finally escapes from the saddle point. In fact, molecu-
lar collision, atom cluster and heavy-ion fusion are such
barrier passage problems [8–16]. The fusion probability
was obtained by the passing probability of a Brownian
particle over the top of an inverse harmonic potential
[17, 18]; the latter has been generalized to include the ef-
fects of quantum fluctuation [19], initial distribution [20],
anomalous diffusion [21] as well as colored noise [22].

In the previous works, the fusion probability was
studied in one dimension and the fission barrier was low
in the study of the cross section of a superheavy nucleus,
so that the reflection boundary was always ignored. As
one knows that the fusion probability has been estimated
by the stationary value of the time-dependent passing
probability in terms of the fusion by the diffusion model
[18], it has a simple form of error function. There is no
need to consider the shell correction of potential energy
and neutron emission in the fusion phase. Actually, the
transient process is very important for the asymptotical
passing probability being regarded as the fusion proba-
bility. The inverse harmonic potential approximation is
suitable only for the near barrier fusion and high fission
barrier cases. In this case, the fission life or the mean
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first passage time from the ground state to the barrier is
much longer than the transient time of the passing prob-
ability over the saddle point. However, the super-heavy
element cases should be treated carefully, because the
component inside the barrier of time-dependent spatial
distribution function (SDF) decays quickly and opposes
the process of passing over the barrier. Therefore, it is
necessary to consider the influence of the metastable po-
tential structure upon the passing probability over the
barrier. Of course, competition between neutron emis-
sion and fission decay needs to be investigated; the for-
mer decreases the temperature of a compound nucleus,
but only occurs in the survival-evaporation phase. At
present, we focus on the time-dependent dynamical fu-
sion probability modified by the effect of the reflection
boundary of a metastable potential.

The paper is organized as follows. In Section 2, we
describe the barrier passage dynamics and propose an ap-
proximate expression for the probability of passing and
against escaping over the barrier of a metastable poten-
tial. In this section, we also analyze the error for the sta-
tionary passing probability over the saddle point of an
inverse harmonic potential regarded as the fusion proba-
bility. Finally, concluding remarks are given in Section 3.

2 Modified barrier passing probability

and fusion-fission dynamics

The dynamics of a Brownian particle of mass m

subjected to a fluctuation force ξ(t) in a potential U(x)
is described by the following Langevin equation:

mẍ(t)+γẋ(t)+U ′(x)=ξ(t), (1)

where ξ(t) is the Gaussian white noise satisfying 〈ξ(t)〉=0
and 〈ξ(t)ξ(t′)〉=2γkBTδ(t−t′), kB is the Boltzmann con-
stant, T is the temperature and γ is the damping coef-
ficient. In order to present an approximate expression
for the time-dependent passing probability and against
escaping over the barrier in a metastable potential, we
consider an inverse harmonic potential linking smoothly
with a harmonic potential,

U(x)=











Ug(x)=
1

2
ω2

g(x−xg)
2, x6xc;

Us(x)=Ub−
1

2
ω2

s x
2, x>xc.

(2)

where xg denotes the coordinate of the ground state,
ωg and ωs are the circular frequencies of the poten-
tial at the ground state and the saddle point, respec-
tively. The linking point of the two potentials is deter-
mined by xc = xgω

2
g/(ω2

g +ω2
s ) through Ug(xc) = Us(xc)

and U ′

g(xc) = U ′

s(xc), Ub is the barrier height given by

Ub =
1

2
ω2

s xcxg. In the calculations, all the parameters

are chosen to be dimensionless forms and m= kB =1.0.
We choose xs=0 to be the coordinate of the saddle point.

Firstly, in Fig. 1, we use the Langevin Monte-Carlo
simulation to plot the time evolution of SDF of the parti-
cle in the inverse harmonic potential and the metastable

Fig. 1. (color online). Time evolution of SDF of a particle. The black-solid and red-triangle lines are the SDFs
of the particle in the inverse harmonic and metastable potentials, respectively. Each inset shows the potential
with dots representing the positions where the peak of the distributions locate. The parameters used are: T =0.4,
γ=1.0, Ub=1.0, v̄0=−5.0 and x̄0=0.2. Note that each subgraph has a different scale.
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potential, respectively. It is seen that the two SDFs are
the same at the beginning, because the metastable well
does not have an effect; however, some test particles have
come into the saddle point and then they display a dif-
ferent behaviour as time goes on. Due to the reflection
boundary of the metastable potential, the SDF in this
potential shows a quasi-stationary Boltzmann distribu-
tion around the well and its right-tail escapes continually
from the barrier; of course, all the test particles escape
from the barrier in the long time limit. Nevertheless,
the SDF in the inverse harmonic potential case remains
Gaussian all along, but its center tends towards infin-
ity after crossing over the potential top when the initial
conditions are larger than the critical conditions [18]. On
the other hand, we find that the descent time of the par-
ticles from the barrier to the bottom of the well is fast
enough, so that the influence of this process upon the
modified passing probability is not important.

Let us reconsider the time-dependent process for
passing over the saddle point of an inverse harmonic
potential. In this case, the first equation in Eq. (2) is
ignored. This model has been used widely in the calcu-
lations of fusion probability. The Brownian particle is
located initially at the position x0 > 0 and has a neg-
ative velocity v0 < 0. The phase distribution function
W (x,v,t) of the particle at time t is also a Gaussian one
due to both linear equation and Gaussian noise. It is
written as [20, 21, 23–25]:

W (t;x,v) =
1

2πσx(t)σv(t)

exp

(

− [x(t)−〈x(t)〉]2
2σ2

x(t)

)

×exp

(

− [v(t)−〈v(t)〉]2
2σ2

v(t)

)

, (3)

where 〈x(t)〉 is the average position of the particle and
σ2

x(t) is the coordinate variance, they are respectively
[20]

〈x(t)〉 = x0A(t)+v0B(t),

σ2
x(t) =

T

mω2
s
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, (4)

where A(t) and B(t) are given by

A(t) = exp(−γt)

[
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√
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. (5)

The time-dependent passing probability Ppass(t, x0,
v0) of the particle over the saddle point of an inverse
harmonic potential is determined by

Ppass(t;x0,v0) =

∫
∞

−∞

∫0

−∞

W (t;x,v)dvdx

=
1

2
erfc

( 〈x(t)〉√
2σx(t)

)

, (6)

which depends on the initial conditions of the coordi-
nates and velocity of the particle.

In the case of heavy-ion fusion, a dispersion of the
initial conditions should be considered with a different
width, assuming a Gaussian distribution [20],

W0(x̄0,σx0
,v̄0,T0) =

1

2πσx0

√
mT0

exp

(

− [x0−x̄0]
2

2σ2
x0

)

×exp

(

− [v0−v̄0]
2

2mT0

)

. (7)

Thus the time-dependent passing probability
P̄pass(t,x0,v0) over the saddle point of an inverse har-
monic potential is written as

P̄pass(t;x̄0,σx0
,v̄o,T0) =

∫
∞

−∞

dx0

∫
∞

−∞

dv0Ppass(t;x0,v0)

×W0(x̄0,σx0
,v̄0,T0)

=
1

2
erfc

( 〈x̄(t)〉√
2σ′

x(t)

)

, (8)

where 〈x̄(t)〉 is the same as in Eq. (5), provided that
x0 and v0 are replaced by x̄0 and v̄0, respectively. The
variance becomes

σ′2
x

(t)=σ2
x
(t)+σ2

x0
(t)A2(t)+mT0B

2(t). (9)

In these equations, T0 is a parameter for the initial dis-
tribution that could be interpreted as the temperature
of the nuclei at contact [20]. Naturally, the SDF of the
particle under fluctuation force becomes wider and wider
and its center moves along the direction of initial veloc-
ity as time goes on. After the transient time, a part
of the SDF has passed over the saddle point and then
the passing probability converges to a finite value with
06P̄pass61, because of limt→∞〈x̄(t)〉/σ′

x
(t)=constant in

Eq. (10).
We can find that the descent time of the particle from

the barrier to the bottom of the well increases with the
increase of the initial temperature of thermalization, as
shown in Fig. 2. As a consequence, the initial kinetic
energy should be considered and this result is similar to
Ref. [20] for a sharp initial condition.
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Fig. 2. (color online). The time-dependent passing
probability with logarithmic of the time. Here,
T =0.4, γ=1.0, Ub =1.0, σx0

=0.0, v̄0 =−5.0 and
x̄0=0.2.

We now address the modified passing probability tak-
ing into account the influence of the reflection boundary
of a potential by a reasonable assumption. According to
the Kramers rate theory, the particle subjected to ther-
mal fluctuation in the metastable potential will finally
decay over the barrier [24, 26]. We multiply the expo-
nential decay factor into the passing probability which
has been coupled with the fusion and fission processes, so
that the modified passing probability, namely, the time-
dependent probability of the particle staying inside the
saddle point, is assumed to be

Pm-pass(t;x0,v0) = P̄pass(t;x̄0,σx0
,v̄0,T0)exp(−ret)

=
1

2
erfc

( 〈x̄(t)〉√
2σ′

x(t)

)

exp(−ret), (10)

where re is the steady escape rate [1, 5, 27–31]. This ap-
proximation implies that once the particle passes over the
barrier top, it should finally escape over the barrier with
the Kramers decay form. In Fig. 2, it is obvious that
the transient time can be ignored in the calculation of the
time-dependent modified passing probability. If re → 0,
exp(−ret) ≈ 1 after a finite time, the modified passing
probability (Eq. (10)) approaches the passing probabil-
ity (Eq. (8)) for the inverse harmonic potential.

The Kramers rate formula [1, 5, 29] produces a better
stationary result of time-dependent escape rate when the
barrier height of the metastable potential is larger than
the temperature, as shown in Fig. 3(a). However, when
the temperature is larger than the barrier height, the
Kramers rate formula is not applicable. We use the in-
verse of the mean first passage time (MFPT) [30] across
an exit xex given by

τMFPT(x0→xex) =









√

γ2

4
+ω2

s−
γ

2
ωs









−1

ωs

T

×
∫xex

x0

dyexp

[

U(y)

T

]

×
∫y

−∞

dzexp

[

−U(z)

T

]

(11)

to replace the stationary escape rate of the particle in a
metastable potential well, i.e., re=(τMFPT)−1 [5, 31]. No-
tice that we introduce here a correction factor of general
damping to the previous overdamped result. Indeed, Eq.
(11) is in agreement with the result of Refs. [30, 32–36]
in the overdamped case (γ �ωs). At low temperature,
Eq. (11) can be evaluated within the steepest-descent
approximation [5] as the following

τMFPT(x0→xex) =









√

γ2

4
+ω2

s−
γ

2
ωs









−1

×2π

ωg

exp

(

Ub

T

)

; (12)

its inverse coincides with the Kramers rate formula [37].

Fig. 3. (color online). Time-dependent escape rate
calculated by Langevin simulation and compared
by the analytical formula of two kinds. (a) is the
low-temperature case (Ub =1.0, T =0.4) and (b)
is the high-temperature case (Ub=0.25, T =2.0).
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Furthermore, the advance of MFPT or the mean last
passage time (MLPT) [35] is not restricted to smooth
metastable potentials. Eq. (11) is still suitable even if
the nuclear shell correction is taken into account in the
deformation potential energy of super-heavy elements.
A statistical proof for the relation between the Kramers
rate constant and the MFPT or the MLPT was presented
in Ref. [36].

As is known, the fusion probability can be defined as
the transmission coefficients for central collisions which
are calculated by counting for each energy the number
of Langevin trajectories which fuse and dividing it by
the total number of trajectories [6]. In Figs. 4 and 5,
we compare the time-dependent modified passing prob-
ability (Eq. (10)) with the Langevin Monte-Carlo simu-
lation for Eqs. (1) and (2) and the passing probability
(Eq. (8)) over the saddle point of the inverse harmonic
potential, respectively, where three typical initial veloci-
ties are used. It is evident from Eq. (10) that the modi-
fied passing probability over the barrier of the metastable
potential approaches zero in the long-time limit.

It is seen from Fig. 4 that the modified passing

probability calculated by our theoretical formula is in
agreement with the Langevin Monte-Carlo simulation
when Ub > T . In particular, the maximal value of the
time-dependent modified passing probability is close to
the stationary value of the passing probability over the
saddle point of the inverse harmonic potential. This
means that the influence of the reflection boundary of
the metastable potential upon the transient part of the
time-dependent passing probability is weak in the case
of low temperature or high barrier. Fig. 5 shows the cal-
culated result at high temperature, in which the barrier
height of the metastable potential is Ub = 1.0 and the
temperature T =2.0.

If the barrier height is low, the particle under influ-
ence of the reflection boundary of potential can more
easily escape over the saddle point, so that the time re-
quired for the modified passing probability arriving at
the maximum is earlier than that of the passing proba-
bility approaching its stationary value. This concludes
that the reflection boundary of the metastable poten-
tial plays a decreasing role to the transient result of the
passing probability.

Fig. 4. (color online). The time-dependent modified passing probability over the barrier of the metastable potential
and the passing probability over the saddle point of the inverse harmonic potential with three typical initial
velocities: (a) v0 =0, (b) v0 =−0.3, (c) v0 =−1.0. The parameters used are: Ub =1.0, T =0.4, T0 =0.4, σx0

=0,
γ=1.0, x0=0.2.

Fig. 5. (color online). Comparison of the time-dependent modified passing probability over the barrier of the
metastable potential and the passing probability over the saddle point of the inverse harmonic potential with three
typical initial velocities: (a) v0=0, (b) v0=−0.5, (c) v0=−2.0. The parameters used are: Ub=1.0, T =2.0, T0=2.0,
γ=2.0, σx0

=0, x0=0.2.
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We have proposed the expression of the time-
dependent modified passing probability against escap-
ing over the barrier of the metastable potential, i.e., Eq.
(10); the time leading to Pm-pass becomes the maximum
that is determined by the positive real root of the follow-
ing equation:

dPm-pass

dt
=

1

2
exp(−ret)J(t)−1

2
reexp(−ret)

×erfc

( 〈x̄(t)〉√
2σ′

x(t)

)

=0, (13)

where J(t) is the derivative of erfc[〈x̄(t)〉/(
√

2σ′

x
(t))]

given by

J(t) = − 2√
π

exp
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−〈x̄(t)〉2
σ′2

x
(t)

)[

M(t)√
2σ′

x(t)
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2
√

2mω2
s

〈x̄(t)〉G(t)

σ′3
x (t)

]

, (14)

where M(t) and G(t) are

M(t) = exp(−γt)

[

( v̄0
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− x̄0γ

2

)

cosh
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1

2
at
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(

ax̄0

2
+

γ2x̄0

a
−2γv̄0

ma

)

sinh

(

1

2
at

)]

,

G(t) = 2γ

(

1−γ2

a2

)

exp(−γt)sinh2

(

1

2
at

)

, (15)

where a=
√

4ω2
s +γ2. Hence the maximum of the time-

dependent modified passing probability can be obtained
by Eq. (10) through solving numerically Eqs. (13)–(15).
Notice that this quantity is defined depending on the
model parameters. It is seen from Fig. 2 that the time
corresponding to the maximal staying probability is
equal approximately to the transient time of the pass-
ing probability only in the case of a high barrier.

In Fig. 6, we show the maximal value of the time-
dependent modified passing probability over the saddle
point of the metastable potential as a function of the
barrier height, which is also compared with the station-
ary passing probability over the saddle point of the in-
verse harmonic potential. It is seen that with the in-
crease of the barrier height, the maximal value of the
time-dependent modified passing probability is close to
the stationary value of the passing probability over the
saddle point of the inverse harmonic potential, so that
one can approximately treat the asymptotical passing
probability over the saddle point of the inverse harmonic
potential as the fusion probability in a massive nuclear
fusion reaction. However, when the fission barrier is low,
which occurs in the super-heavy element cases, the sta-
tionary value of the time-dependent passing probability
over the saddle point of the inverse harmonic potential
is no longer applicable for the fusion probability. From
the present work, we think that it is better to regard the

maximal value of the time-dependent modified passing
probability over the saddle point of the metastable po-
tential as the fusion probability, since the modified pass-
ing probability is the result of the whole fusion-fission
process.

Fig. 6. (color online) The maximum value of
the time-dependent modified passing probabil-
ity (blue-circled-line) over the barrier of the
metastable potential and the stationary passing
probability (black-squared-line) over the saddle
point of the inverse harmonic potential. They are
compared with the Langevin Monte-Carlo simu-
lations (red-triangled-line).

3 Conclusion

We have investigated the whole fusion-fission process
with the Langevin approach, in which the influence of the
reflection boundary of the metastable potential is taken
into account in the calculation of the time-dependent
passing probability over the saddle point. By the passing
probability over the saddle point of the inverse harmonic
potential multiplying the exponential decay factor of the
particle in the metastable potential, an approximate an-
alytical expression for the modified time-dependent pass-
ing probability over the saddle point of the metastable
potential has been proposed. Our results have shown
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that only when the temperature is smaller than the fis-
sion barrier of the fusing system, the stationary passing
probability over the saddle point of an inverse harmonic
potential can be regarded as the fusion probability of the
massive nuclei. Nevertheless, at a low fission barrier, the
reflection boundary plays a decreasing role for the pass-

ing probability over the saddle point. It has been found
that the time required for the modified time-dependent
passing probability arriving at the maximal value is ear-
lier than the transient time of the passing probability.
This is due to the decaying probability against the pass-
ing probability.
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