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Quadrupole-octopole alignment of CMB related to the primordial

power spectrum with dipolar modulation in anisotropic spacetime *
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Abstract: The WMAP and Planck observations show that the quadrupole and octopole orientations of the CMB

might align with each other. We reveal that the quadrupole-octopole alignment is a natural implication of the

primordial power spectrum in an anisotropic spacetime. The primordial power spectrum is presented with a dipolar

modulation. We obtain the privileged plane by employing the “power tensor” technique. At this plane, there is

maximum correlation between quadrupole and octopole. The probability for the alignment is much larger than that

in the isotropic universe. We find that this model would lead to deviations from the statistical isotropy only for low-`

multipoles.
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1 Introduction

The universe is assumed to be statistically isotropic
at large scales in the standard model of cosmology. Re-
cently, however, evidence has appeared for possible de-
viations from the statistical isotropy of the CMB tem-
perature fluctuations [1, 2]. One refers to the alignment
of the quadrupole and octopole orientations. Based on
the one-year WMAP data [3], Tegmark et al. [4] and
Copi et al. [5–7] originally proposed that there is a
quadrupole-octopole alignment of CMB anisotropy. The
recent nine-year WMAP results [1] also show that the
quadrupole-octopole alignment is about 3◦. The Planck
2013 results [2] confirm the evidence for this alignment
while there is a misalignment between the quadrupole
and octopole orientations by an amount between 9◦ and
13◦. However, the quadrupole and octopole orientations
are distributed uniformly in the isotropic universe. The
possibility for the quadrupole-octopole alignment is ex-
pected to be much smaller.

The significance of the quadrupole-octopole align-
ment based on the Planck dataset becomes smaller than
that based on the WMAP dataset. Nevertheless, we
cannot simply drop the proposition that the universe
might be statistically anisotropic at large scales. The
reason is that there are several other “anomalies” of

the CMB anisotropy at low-` multipoles. For instance,
the hemispherical asymmetry [8–10], the parity asym-
metry [11–22], the dipolar power modulation [23–26],
and so on. These anomalies might be related to the
deviation from isotropy if they occupy certain cosmo-
logical origins [2]. There is a useful approach called the
“power tensor” technique [27–29] to study the deviations
from the isotropy in the CMB. The power tensor is a
generalization of the power spectrum. In the limit of
isotropy, its ensemble expectation would reduce to the
power spectrum. However, it could not be diagonal in
the anisotropic universe. The correlation between two
power tensors directly describes the level of alignment
between two multipoles. In this paper, we employ this
method to study the quadrupole-octopole alignment in
an anisotropic spacetime.

The deviations from isotropy may be related with a
privileged direction in the universe. We have proposed
an anisotropic inflation model in the Randers spacetime
to study the dipole modulation of the CMB temperature
fluctuations [30]. In the Randers spacetime [31], the line
element includes an extra one-form in addition to the
Riemannian line element. The one-form would reduce
the number of Killing vectors. Locally, this one-form has
been extensively studied in very special relativity (VSR)
[32]. The local Randers metric was proved to possess
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symmetries of the group TE(2) [33, 34]. Thus, the
Randers spacetime has fewer symmetries than the Rie-
mannian Friedmann-Robertson-Walker (FRW) space-
time does. There is a privileged direction in the Ran-
ders spacetime. It would induce the primordial power
spectrum with a dipolar modulation if the inflationary
universe is of Randers type [30]. This initial spectrum
with anisotropy is compatible with the Planck 2013 re-
sults.

The Randers spacetime belongs to Finsler geometry
[35, 36]. Finsler geometry gets rid of the quadratic re-
striction on the line element. It is a natural general-
ization of Riemann geometry and includes Riemann ge-
ometry as a special case. It is intrinsically anisotropic.
The isometric transformation shows that there are less
symmetries in Finsler geometry than in Riemann geom-
etry [33, 37, 38]. Thus, Finsler geometry could be a
reasonable candidate to account for the deviations from
isotropy at large scales in the universe. In this pa-
per, we employ the Randers-Finsler spacetime to study
the quadrupole-octopole alignment. The anisotropic in-
flation model and the primordial power spectrum with
dipolar modulation are introduced briefly. By the “power
tensor” technique, we study the correlations between two
multipoles. We obtain eigenvectors with the maximum
eigenvalue of the correlation matrix of two power ten-
sors. Several quantities, which describe the correlations
between two multipoles, are evaluated.

The rest of the paper is arranged as follows. In Sec-
tion 2, we introduce the “power tensor” technique to
study the statistical anisotropy. The correlation matrix
of two power tensors is defined to study the statisti-
cal correlation between two multipoles. In Section 3,
we briefly review the inflation model with anisotropy in
the Randers-Finsler spacetime. The primordial power
spectrum is presented with a dipolar modulation. In
Section 4, we study the implications of the primordial
power spectrum with anisotropy on the mode alignments
of CMB anisotropy, especially the quadrupole-octopole
alignment. Conclusions and remarks are listed in Sec-
tion 5. In addition, there are two appendixes for calcu-
lating physical quantities explicitly.

2 The “power tensor” technique

Generically, the CMB temperature fluctuation
δT

T
(p̂,x,η) could be decomposed in terms of the spheri-

cal harmonics Y`m(p̂), namely,

δT

T
(p̂,x,η)=

∞
∑

`=1

∑̀

m=−`

a`mY`m(p̂), (1)

where p̂ denotes the observed direction by an observer
at the location x, and η denotes the conformal time. We
assume that the CMB anisotropy satisfies the Gaussian
distribution, even though the statistical anisotropy might
be related to non-Gaussianity [39–47]. The variance of
harmonic coefficients a`m gives the two-point correlator.
It is given by

〈a`ma∗

`′m′〉=C``′mm′ , (2)

where the angle brackets stand for the ensemble aver-
age. The correlators C``′mm′ might be not diagonal in
the anisotropic case. In the case of statistical isotropy,
it reduces to the power spectrum C``′mm′ =C`δ``′δmm′ .

At the largest scales, the CMB temperature fluctua-
tions are linear. They could be given by

δT

T
(p̂,x,η)=

∫
d3k

(2π)3/2
R(k,ηi)∆(k,k̂·p̂,η)eik·x, (3)

where k = |k|, and R(k,ηi) is the initial curvature per-

turbation at the initial time ηi. Here ∆(k,k̂·p̂,η) denotes
the transfer function, which characterizes the change of
amplitude of the CMB temperature fluctuation from the
conformal time ηi to today η. It could be expanded in
terms of Legendre polynomials,

∆(k,k̂·p̂,η)=
∑

`

(−i)`

(

2`+1

4π

)

P`(k̂·p̂)∆`(k,η). (4)

According to Eq. (1)–(4), the correlators C``′mm′ could
be calculated as1)

C``′mm′ = (−i)`−`′
∫
d3k

2π
2

k3
PR(k)∆`(k,η)∆∗

`′(k,η)

× Y ∗

`m(k̂)Y`′m′ (k̂). (5)

Here, the primordial power spectrum PR(k) is given by

〈R(k)R∗(k′)〉=δ(3)(k−k′)
2π

2

k3
PR(k), (6)

which encodes all the properties of statistical anisotropy.
In this paper, we employ the “power tensor” tech-

nique [27–29] to study the possible statistical anisotropy
of the CMB temperature fluctuations in an anisotropic
spacetime. The power tensor is defined by a second-rank
matrix as

Aij(`)=N(`)
∑

m,m′,m′′

〈`m|Ji|`m
′〉〈`m′′|Jj |`m〉a`m′a∗

`m′′ ,

(7)
where the coefficient N(`) refers2)

N(`)=
1

`(`+1)(2`+1)
. (8)

1) See Appendix A for an explicit calculation.

2) This is slightly different from the original definition in Refs. [28, 29]. One should note that the power tensor requires the condition

〈Aij(`)〉=
1

3
C`δij in the limit of statistical isotropy. The definition here satisfies this condition.
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Here, Ji denotes the i-th component of angular momen-
tum operator, and the state |`m〉 stands for the spin-`
representation. The power tensor is real and symmetric.
The privileged direction of the `-multipole is given by
the eigenvector of 〈Aij(`)〉 with the maximum eigenvalue.
However, it is possible that 〈Aij(`)〉 has no preferred di-
rections when the statistical anisotropy has certain par-
ticular behaviors. For instance, the initial power spec-
trum PR(k) may acquire a dipolar modulation [29, 30].
The two-point correlators could reduce to the isotropic
form, since a dipole is point-parity asymmetric, see Ap-
pendix A. In this case, the multipoles would acquire pre-
ferred directions occasionally. One should note that the
privileged direction of a multipole is not statistically sig-
nificant. Only the alignment of two multipoles reveals
the possible statistical anisotropy.

There is a useful way to describe the alignment of two
multipoles. It refers to the correlator of two power ten-
sors with different multipoles [29]. Thus, the correlation
of two power tensors is defined as1)

S(`,`′)=
3

C`C`′
Tr(〈A+(`)A(`′)〉ij)−1 . (9)

This quantity describes the level of alignment between
two multipoles. It is directly a statistically significant
quantity. In the isotropic case, S(`,`′) would vanish.
Even though S(`,`′) could give the magnitude of cor-
relations, it is direction-blind since it cannot determine
the direction (or the plane) of the maximum correlation.
Statistically, however, the alignment of two multipoles
would lie on the direction(s) of the maximum correlation.
Fortunately, it is easy to overcome the above problem.
One can define a second-rank real symmetric matrix as

Sij(`,`
′)=

3

C`C`′
〈A+(`)A(`′)〉ij−

1

3
δij . (10)

In the following, we call this matrix the “correlation ma-
trix” of power tensors, or “correlation matrix” for short.
We can obtain the eigenvalues and the related eigenvec-
tors of Sij(`,`

′). The eigenvectors with the maximum
eigenvalue would give the privileged directions, which
refer to the maximum correlation of the two multipoles.
In Section 4, we will follow this approach to study the
quadrupole–octopole alignment of the CMB anisotropy
in an anisotropic spacetime.

3 Primordial power spectra with

anisotropy

Recently, an anisotropic inflation model has been
proposed explicitly in Ref. [30]. This model suggested
that the spacetime of the very early universe may be of

Randers-Finsler type. The Friedmann equation as well
as its inflationary solution was presented at first order.
The primordial power spectrum was obtained with direc-
tion dependence. For example, it might acquire a dipolar
modulation at the first-order approximation. In this sec-
tion, we briefly review the main results of the anisotropic
inflation model.

Finsler geometry [35, 36] is defined by the Finsler
structure F (x,y), where x denotes a position and y =
dx/dτ a fibre coordinate. The Finsler structure is a
smooth positive function on the tangent bundle. It sat-
isfies the property of positive homogeneity of degree one,

F (x,λy)=λF (x,y), for λ>0 . (11)

The Finsler metric is defined by

gµν =
∂

∂yµ

∂
∂yν

(

1

2
F 2

)

. (12)

The Randers spacetime [31] is a class of Finsler space-
time. The Randers(-Finsler) structure is given as

F (x,y)=α(x,y)+β(x,y) , (13)

where

α(x,y) =
√

ãµν(x)yµyν , (14)

β(x,y) = b̃µ(x)yµ . (15)

Here α denotes a Riemann structure and ãµν the Rie-
mann metric. β denotes a 1-form, which may be re-
lated to a vector field. In the following discussions, we
choose ãµν the spatially flat FRW metric, i.e., ãµν =
diag(1,−a2(t),−a2(t),−a2(t)). The 1-form β has just the
temporal component

b̃µ=B(x3)δ0
µ , (16)

where B(x3) is a function of only the third spatial coor-
dinate x3.

In the osculating Riemannian approach [48–50], the
Finsler structure could be related to a certain osculating
Riemannian metric, namely, gµν(x) = gµν(x,y(x)). The
fibre coordinate y could be viewed as a function of the
spacetime position x. We are only interested in the evo-
lution of the very early universe. After our calculation
of the connection and the curvature tensor, Einstein’s
gravitational equation could be obtained as [30, 50]

Ricµν−
1

2
gµνS=8πGTµν , (17)

where Ricµν denotes the Ricci tensor, S denotes the
scalar curvature, and

Tµν(φ)=∂µφ∂ν φ−gµν

(

1

2
gαβ ∂αφ∂βφ−V (φ)

)

(18)

1) This form of the correlation has a slight difference from the original one in Ref. [29]. Here, we have only extracted the anisotropic
effects. In the original definition, however, S(`,`′) is given by the correlator of two power tensors. Thus, the isotropic effects are still
contained in the original definition. One should note that these two definitions would point to the same physical results.
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is the energy-momentum tensor of the inflaton field.
Here V (φ) is a potential of the inflaton.

At a very early time, the universe might have un-
dergone an era of exponential expansion, which is called
inflation [51–55]. The scale factor expands as a(t)∼eHt

where H denotes the Hubble constant. The inflation
could be decomposed as φ=φ(0)(t)+δφ(t,x). Here φ(0)(t)
denotes the zero-order part which drives the inflation.
The 00 component of Einstein’s gravitational equation
gives the Friedmann equation [30]

3

(

ȧ

a

)2

+

(

1

a

)2
3B′2−4B′′(1+B)

4(1+B)
=8πGT00(φ

(0)) , (19)

where the dot and the prime denote derivatives with re-
spect to t and x3, respectively. At first order, the above
Friedmann equation could have an inflationary solution
[30]

a(t) ∝ eHt , (20)

B(x3) = r−1
c x3+O(x3) , (21)

where rc stands for a spatial scale for cutoff. This cutoff
scale would be comparable to the observable scale of the
universe. One should note that B(x3) depends only on
x3 such that the inflationary universe does not deserve
the spherical symmetry. Thus, the universe would have
undergone a phase of anisotropic inflation.

The anisotropic inflation should leave certain
anisotropic imprints on the observable universe [56].
The primordial power spectrum has been calculated in
Ref. [30]. It could acquire a dipolar modulation besides
the isotropic power spectrum. To obtain the primor-
dial power spectrum, one should study the equation of
motion for the first-order perturbation δφ(t,x) of the in-
flaton [57–63], see also Refs. [64, 65]. The equation of
motion for δφ(t,x) could be given as [30]

δφ̈+3Hδφ̇−
1+B

a2
∇2

δφ−
3

2

B′

a2
δφ′=0. (22)

In momentum space, this equation becomes

¨δφk+3H ˙δφk+
k2

eff

a2
δφk=0, (23)

where the effective wavenumber keff is given by

k2
eff =k2

(

1+B−i
3B′

2k
(k̂·x̂3)

)

. (24)

At the super-horizon scales, therefore, we obtain the pri-
mordial power spectrum of the form [30]

Pδφk
=

(

H

2π

)2(
k

|keff |

)3

. (25)

As a first-order approximation, thus, the initial power
spectrum (6) of comoving curvature perturbation could

be obtained as

PR'

(

H

φ̇

)2

Pδφk
'P iso

R
(k)(1−3B), (26)

where P iso
R

(k)'

(

H

2π

)2

. We have dropped the terms of

higher orders in B. By using Eq. (21), the initial power
spectrum (26) could be rewritten as

PR(k)=P iso
R

(k)

(

1+
kc

k
(k̂·n̂)

)

. (27)

We have used the relation x∼k−1 in the above equation,
and extra constants have been absorbed into kc. Here
n̂≡ x̂3 denotes the privileged direction in general. The
parameter kc denotes a critical wavenumber, which refers
to the range of the statistical anisotropy. By comparing
(27) with (A11), we obtain a relation g(k)=kck

−1. This
prediction implies that the anisotropic effects would be
significant at large scales only. It is compatible with the
observable constraints at present [30, 40].

4 Implications on the quadrupole-

octopole alignment

In the above section, we have briefly reviewed the
inflation model and the anisotropic power spectrum
in Randers spacetime. It was revealed that the power
spectrum acquires a dipolar modulation. In this sec-
tion, we apply this dipole-modulated power spectrum to
study the quadrupole-octopole alignment of the CMB
anisotropy.

We are only interested in the case `′= +̀1. The initial
power spectrum has been presented in Eq. (27). Thus,
the correlators C``′mm′ ’s in Eq. (5) could be computed
as

C``′mm′ = C iso
``′mm′+Caniso

``′mm′ , (28)

C iso
``′mm′ = δ``′δmm′

∫
dk

k
P iso

R
(k)∆`(k,η)∆∗

` (k,η), (29)

Caniso
``′mm′ = (−i)`−`′+1ζ`m;`′m′

∫
dk

k
P iso

R
(k)

(

kc

k

)

×∆`(k,η)∆∗

`′(k,η). (30)

Eq. (29) corresponds to the isotropic case, while Eq. (30)
describes violations of the statistical isotropy. Here, the
coefficient ζ`m;`′m′ is given by

ζ`m;`′m′ =

√

4π

3

∫
dΩk̂Y10(k̂)Y ∗

`m(k̂)Y`′m′(k̂) (31)

= δm′,m

(

δ`′,`+1

√

(`−m+1)(`+m+1)

(2`+1)(2`+3)

+δ`′,`−1

√

(`−m)(`+m)

(2`+1)(2`−1)

)

. (32)

055101-4



Chinese Physics C Vol. 39, No. 5 (2015) 055101

There is a useful relation for the CMB anisotropy,
namely, a`m = (−1)ma∗

`−m. Therefore, we could obtain
C̄``′mm′≡〈a`ma`′m′〉,

C̄``′mm′ = C̄ iso
``′mm′+C̄aniso

``′mm′ , (33)

C̄ iso
``′mm′ = (−1)mδ``′δmm′

∫
dk

k
P iso

R
(k)

×∆`(k,η)∆∗

` (k,η) , (34)

C̄aniso
``′mm′ = (−1)m(−i)`−`′+1ζ̄`m;`′m′

×

∫
dk

k
P iso

R
(k)

(

kc

k

)

∆`(k,η)∆∗

`′(k,η). (35)

Here ζ̄`m;`′m′ could be obtained by replacing δm′,m in
Eq. (32) with δm′,−m.

By a not too tedious calculation, we get the correla-
tion matrix of power tensors in Eq. (10)

Sij(`,`
′) =

3N(`)N(`′)

C`C`′

`
∑

mn=−`

`′
∑

m′

n
=−`′

JijJ

×(〈a∗

`m2
a`′m′

2
〉〈a`m3

a∗

`′m′

3

〉

+〈a∗

`m2
a∗

`′m′

3

〉〈a`m3
a`′m′

2
〉), (36)

where

Jij ≡ 〈`m3|Ji|`m1〉
∗〈`′m′

3|Jj |`
′m′

1〉, (37)

J ≡
∑

k

〈`m1|Jk|`m2〉
∗〈`′m′

1|Jk|`
′m′

2〉. (38)

The explicit expressions of J and Jij can be found in
Appendix B. Here, we have used the expression of four-
point correlators of a`m’s as

〈a∗

`m2
a`m3

a`′m′

2
a∗

`′m′

3

〉 = 〈a∗

`m2
a`m3

〉〈a`′m′

2
a∗

`′m′

3

〉

+〈a∗

`m2
a`′m′

2
〉〈a`m3

a∗

`′m′

3

〉

+〈a∗

`m2
a∗

`′m′

3

〉〈a`m3
a`′m′

2
〉. (39)

Note that the term 〈a∗

`m2
a`m3

〉〈a`′m′

2
a∗

`′m′

3

〉 would not in-

duce the statistical anisotropy in the case of the dipole-
modulated initial power spectrum, see Appendix A. It
is easy to check that its effect cancels the isotropic term
1

3
δij at the right hand side of Eq. (10). Thus, one need

calculate only the other two terms at the right hand side
of Eq. (39). Finally, the correlation matrix (10) (or (36))
can be given as

Sij(`,`
′) =

3N(`)N(`′)

C`C`′

(

∑

mm′

JijJ

×(ζ`m2;`′m′

2
ζ∗

`m3;`′m′

3

+ζ̄`m2;`′m′

3
ζ̄∗

`m3;`′m′

2

)
)

×

(∫
dk

k
P iso

R
(k)

(

kc

k

)

∆`(k,η)∆∗

`′(k,η)

)2

.

(40)

At large scales, the transfer function is approximately
given by ∆`(k)∝J`(k(η−ηls))≈J`(kη). Here, η and ηls de-

note the conformal time today and at the last scattering,
respectively. The last approximation arises from ηls�η.
We could compute all the components of Sij(`,`

′) for a
given `. The eigenvalues and eigenvectors could also be
calculated directly as was mentioned in Section 2. Thus,
the privileged direction is singled out for the maximum
correlation of the two multipoles.

We are interested in the quadrupole-octopole align-
ment of CMB anisotropy. After a lengthy computation,
it is shown that the correlation matrix Sij(2,3) is diago-
nal in the coordinates chosen in this paper. Analytically,
Eq. (40) for `=2 is calculated as

Sij(2,3)'(kcη)
2







0.0652 0 0

0 0.0652 0

0 0 0.0235






. (41)

As was mentioned above, kc denotes the critical
wavenumber of the statistical anisotropy, and η is the
conformal time of the universe today. Only when the
critical scale k−1

c �η, the statistical isotropy recovers in
the observable universe. However, the observations of
CMB anisotropy from WMAP and Planck showed cer-
tain possible evidence for the statistical anisotropy at
large scales. This reveals that the critical scale should
be comparable with the present scale of the observable
universe, namely, kcη∼1.

There is the other significant issue which refers to
the privileged direction of the quadrupole-octopole align-
ment. From Eq. (41), the correlation matrix acquires the
maximum eigenvalue along both x1 and x2 directions.
This result reveals that the quadrupole and the octopole
have the maximum correlation in the plane perpendicu-
lar to the privileged direction n̂. Thus, the quadrupole
and octopole orientations should lie in the plane with the
uniform distribution. We cannot determine which direc-
tion is preferred in the plane. Actually, the nine-year
WMAP data show that there is a 3◦ misalignment be-
tween the quadrupole and the octopole [1]. The Planck
2013 results show a larger misalignment of the amount
between 9◦ and 13◦ [2]. Statistically, all the directions
at this plane are equally likely in this model. In the
isotropic universe, however, the quadrupole and octopole
orientations are distributed uniformly on the celestial
sphere. Thus, there is a much larger possibility for the
quadrupole-octopole alignment in this anisotropic model
than that in the isotropic model.

Another significant issue refers to the decreasing rate
of the anisotropic effect. To describe this issue, we could
compute the trace of the correlation matrix Sij(`,`+1).
The correlation S(`,`+1) could be written in the form

S(`,`+1)=s(`)(kcη)2, (42)

where s(`) describes the magnitude of the correlation be-
tween the two multipoles directly. The numerical com-
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putation shows that s(`) is a decreasing function of `, see
Fig. 1.

It reveals that the anisotropic effects dominate at
large angular scales (small `) but decreases at small an-
gular scales (large `). On the other hand, the above
result could also be revealed via the primordial power
spectrum with anisotropy. The anisotropic contribution
in Eq. (27) is inversely proportional to the wavenum-
bers k’s. Thus, it affects dominantly the modes at large
scales (small k). For small scales (large k), it decreases.
These predictions imply that the statistical anisotropy
discussed above affects only the low-` multipoles of the
CMB anisotropy.

Fig. 1. (color online) s(`) is a decreasing function
of multipoles `’s.

5 Conclusions and remarks

In this paper, we resolved the quadrupole-octopole
alignment of CMB anisotropy via the primordial power
spectrum with anisotropy. First, the inflationary uni-
verse was assumed to be of the Randers-Finsler type.
In the Randers spacetime, there is a privileged direction
which characterizes the anisotropy of the spacetime. We
obtained the initial power spectrum with a dipolar mod-
ulation in this spacetime. The dipolar modulation con-
tributes only to the large-scale modes at the universe.
The “power tensor” technique was used to analyze the
induced anisotropic effects. In this model, however, the
anisotropic contribution vanishes for the power tensor
of a `-multipole. Thus, the correlation matrix of power

tensors was defined in our analysis. This is a statisti-
cally significant quantity directly. It describes the direct
correlation between any two multipoles. Thus, its eigen-
vectors with the maximum eigenvalue would lead to the
privileged directions of alignments of the two multipoles.

After a lengthy calculation, we obtained the correla-
tion matrix Sij(2,3) for ` = 2 and `′ = 3. It was found
to be diagonal in the chosen coordinates. It acquires
the maximum eigenvalue at the plane perpendicular to
the privileged direction in the Randers spacetime. This
result reveals that the quadrupole and octopole orien-
tations would lie in this plane with the uniform dis-
tribution. However, we cannot determine which direc-
tion is preferred for the alignment. In the isotropic uni-
verse, by contrast, the quadrupole and octopole orien-
tations are distributed uniformly at the celestial sphere.
Thus, the possibility for the quadrupole-octopole align-
ment is much larger in the anisotropic model than that
in the isotropic model. In addition, we noted that the
anisotropic effect contributes only to the low-` multi-
poles. Fig. 1 shows that the correlation between two
neighboring multipoles decreases rapidly for large `’s.
This is consistent with the present observations.

Originally, the initial power spectrum with the dipo-
lar modulation was used to resolve the dipole modula-
tion of CMB temperature fluctuations at large-angular
scales. Interestingly, the direction for the CMB dipole
modulation was found to be nearly perpendicular to
the quadrupole-octopole alignment [2]. There might be
certain relevance between these two kinds of deviations
from isotropy in the CMB. Nevertheless, we need more
precise observations to test this proposition in future,
since the existing datasets have large uncertainties. In
addition, one should note that Finsler geometry is in-
trinsically anisotropic. Any cosmological process would
acquire similar anisotropic properties in Finsler space-
time. Here we studied the inflationary phase of the
universe in Randers spacetime. We found that there
could be certain imprints of such an anisotropic inflation
on the CMB temperature fluctuations. It would be inter-
esting to test these imprints in future CMB observations.

We are grateful to Yunguo Jiang, Danning Li, Ming-

Hua Li, Hai-Nan Lin, and Bin Qin for useful help and

discussions.
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Appendix A

Calculation of the correlator C``′mm′

In this appendix, we would like to give an explicit cal-
culation of the two-point correlator C``′mm′ . One could also
find a similar derivation in Ref. [66]. First, we could obtain
the expression for a`m by inverting Eq. (1)

a`m=

∫
dΩp̂

δT

T
(p̂,x,η)Y ∗

`m(p̂). (A1)

By substituting Eq. (A1) into Eq. (2), one obtains

C``′mm′ =

∫
dΩp̂dΩp̂′

〈

δT

T
(p̂,x,η)

δT ∗

T
(p̂′

,x,η)

〉

× Y
∗

`m(p̂)Y`′m′ (p̂′). (A2)

The CMB temperature fluctuations have evolved from the
initial curvature perturbations according to Eq. (3). Using
Eq. (3) and Eq. (6), we could get

C``′mm′ =

∫
d3k

(2π)3
2π

2

k3
PR(k)

∫
dΩp̂dΩp̂′∆(k,k̂·p̂,η)

× ∆
∗(k,k̂·p̂′

,η)Y ∗

`m(p̂)Y`′m′ (p̂′). (A3)

The transfer function ∆(k,k̂ ·p̂,η) has been decomposed in
terms of Legendre polynomials in Eq. (4). By substituting
Eq. (4) into Eq. (A3), one obtains

C``′mm′ =

∫
d3

k
2π

2

k3
PR(k)

∑

`′′`′′′

(−i)`′′−`′′′
∆`′′ (k,η)

×∆
∗

`′′′(k,η)

∫
dΩp̂dΩp̂′

(

2`′′+1

4π

)

P`′′ (k̂·p̂)

×

(

2`′′′+1

4π

)

P
∗

`′′′ (k̂·p̂
′)Y ∗

`m(p̂)Y`′m′ (p̂′), (A4)

=

∫
d3k

(2π)3
2π

2

k3
PR(k)

∑

`′′m′′

∑

`′′′m′′′

(−i)`′′−`′′′

×∆`′′(k,η)∆∗

`′′′ (k,η)Y ∗

`′′m′′ (k̂)Y`′′′m′′′ (k̂)

×

∫
dΩp̂Y

∗

`m(p̂)Y`′′m′′ (p̂)

×

∫
dΩp̂′Y

∗

`′′′m′′′ (p̂′)Y`′m′ (p̂′), (A5)

=

∫
d3k

(2π)3
2π

2

k3
PR(k)((−i)`−`′

∆`(k,η)

×∆
∗

`′(k,η)Y ∗

`m(k̂)Y`′m′ (k̂)). (A6)

Here Eq. (A6) is just Eq. (5) in the main text. From (A4) to
(A5), we have used the fact that Lengendre polynomial could

be expanded in terms of the spherical harmonics, i.e.,

P`(k̂·p̂)=
4π

2`+1

∑̀

m=−`

Y
∗

`m(k̂)Y`m(p̂) . (A7)

From (A5) to (A6), we used the orthogonal relation of spher-
ical harmonics, namely,

∫
dΩp̂Y

∗

`m(p̂)Y`′m′ (p̂)=δ``′δmm′ . (A8)

In the limit of statistical isotropy, Eq. (A6) will reduce to the
diagonal form,

C
iso
``′mm′ =C`δ``′δmm′ , (A9)

where the variance C` is given by

C`=

∫
dk

k
PR(k)|∆`(k,η)|2. (A10)

This is Eq. (29) in the main text.
In the following, we discuss a special case where 〈Aij(`)〉

has no preferred directions while the initial perturbations are
anisotropic. In this case, one should analyze the correlation
matrix of power tensors to determine the possible alignment
of two multipoles as was discussed in Eq. (9) and Eq. (10).
As an example, we discuss the simplest case that the initial
power spectrum has a dipolar modulation, namely, [29, 30]

PR(k)=P iso
R (k)

(

1+g(k)(k̂·n̂)
)

, (A11)

where P iso
R (k) denotes the isotropic part and g(k) is a func-

tion of k. Here n̂ denotes the privileged direction derived
from certain anisotropic spacetime. Let the third spatial di-
rection x3 align with n̂. We could use the polar coordinate
system in the momentum space. The spherical harmonics are
given as

Y`m(θ,φ)=eimφ

√

(2`+1)(`−m)!

4π(`+m)!
P

m
` (cosθ), (A12)

where θ is the angle between k̂ and z-direction. The expres-
sion of 〈Aij(`)〉 can be written as

〈Aij(`)〉=N(`)
∑

m,m′,m′′

〈`m|Ji|`m
′〉〈`m′′|Jj |`m〉C``m′m′′ .

(A13)
To obtain C``m′m′′ , one need only calculate the anisotropic
effect as

C
aniso
``m′m′′ ≡ C``m′m′′−C

iso
``m′m′′

=

∫
dk

k
P iso

R (k)g(k)|∆`(k,η)|2I, (A14)

where I denotes the integral as

I=

∫
dΩk̂(n̂·k̂)Y ∗

`m′ (k̂)Y`m′′ (k̂). (A15)
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We can show that I always vanishes. In the polar coordinates,
I could be rewritten as

I=

∫2π

0

dφ

∫π

0

sinθdθcosθY
∗

`m′ (θ,φ)Y`m′′ (θ,φ). (A16)

By substituting (A12) into the above equation, we obtain

I∝δm′m′′

∫
−1

1

dζζ|P m′

` (ζ)|2, (A17)

where ζ =cosθ. It is obvious that the above integral always
vanishes. In this way, C``m′m′′ reduces to the isotropic case
C`δm′m′′ . Thus, the dipolar modulation of the initial per-
turbations does not affect the eigenvalues of 〈Aij(`)〉. Nev-
ertheless, it could influence the correlation matrix of power
tensors. This issue has been discussed in Section 2 and
Section 4.

Appendix B

Expressions of J and Jij

In this Appendix, we give the explicit expressions of J

and Jij . The representation of so(3) algebra is assumed in
the following computation. Especially, we use

J± = J1±iJ2, (B1)

J±|`m〉 = d±(`,m)|`m〉, (B2)

J3|`m〉 = m|`m〉, (B3)

where
d±(`,m)=

√

(`∓m)(`±m+1). (B4)

According to the definition (38), J can be obtained as [29]

J =
1

2
[d−(`,m1)d+(`′,m′

2)δm2,m1−1δm′

1
,m′

2
+1

+d+(`,m1)d−(`′,m′

2)δm2,m1+1δm′

1
,m′

2
−1

+2m1m
′

1δm1,m2
δm′

1
,m′

2
]. (B5)

Similarly, the components of Jij defined in (37) are listed as
follows:

J11 =
1

4
[d−(`,m3)d+(`′,m′

1)δm1,m3−1δm′

3
,m′

1
+1

+d+(`,m3)d−(`′,m′

1)δm1,m3+1δm′

3
,m′

1
−1

+d−(`,m3)d−(`′,m′

1)δm1,m3−1δm′

3
,m′

1
−1

+d+(`,m3)d+(`′,m′

1)δm1,m3+1δm′

3
,m′

1
+1], (B6)

J22 =
1

4
[d−(`,m3)d+(`′,m′

1)δm1,m3−1δm′

3
,m′

1
+1

+d+(`,m3)d−(`′,m′

1)δm1,m3+1δm′

3
,m′

1
−1

−d−(`,m3)d−(`′,m′

1)δm1,m3−1δm′

3
,m′

1
−1

−d+(`,m3)d+(`′,m′

1)δm1,m3+1δm′

3
,m′

1
+1], (B7)

J33 = m3m
′

1δm1,m3
δm′

1
,m′

3
,

J12 =
1

4i
[d−(`,m3)d+(`′,m′

1)δm1,m3−1δm′

3
,m′

1
+1

−d+(`,m3)d−(`′,m′

1)δm1,m3+1δm′

3
,m′

1
−1

−d−(`,m3)d−(`′,m′

1)δm1,m3−1δm′

3
,m′

1
−1

+d+(`,m3)d+(`′,m′

1)δm1,m3+1δm′

3
,m′

1
+1], (B8)

J21 =
1

4i
[d−(`,m3)d+(`′,m′

1)δm1,m3−1δm′

3
,m′

1
+1

−d+(`,m3)d−(`′,m′

1)δm1,m3+1δm′

3
,m′

1
−1

+d−(`,m3)d−(`′,m′

1)δm1,m3−1δm′

3
,m′

1
−1

−d+(`,m3)d+(`′,m′

1)δm1,m3+1δm′

3
,m′

1
+1], (B9)

J13 =
1

2
m

′

1δm′

1
,m′

3
[d−(`,m3)δm1,m3−1

+d+(`,m3)δm1,m3+1] , (B10)

J31 =
1

2
m3δm1,m3

[d−(`′,m′

1)δm′

3
,m′

1
−1

+d+(`′,m′

1)δm′

3
,m′

1
+1] , (B11)

J23 =
1

2i
m

′

1δm′

1
,m′

3
[d+(`,m3)δm1,m3+1

−d−(`,m3)δm1,m3−1], (B12)

J32 =
1

2i
m3δm1,m3

[d+(`′,m′

1)δm′

3
,m′

1
+1

−d−(`′,m′

1)δm′

3
,m′

1
−1]. (B13)

By substituting the above expressions of J and Jij into
Eq. (40), we can obtain the correlation matrix between any
two neighboring multipoles in the Randers spacetime.
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