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Abstract: The coherent synchrotron radiation (CSR) effect in a bending path plays an important role in transverse

emittance dilution in high-brightness light sources and linear colliders, where the electron beams are of short bunch

length and high peak current. Suppression of the emittance growth induced by CSR is critical to preserve the beam

quality and help improve the machine performance. It has been shown that the CSR effect in a double-bend achromat

(DBA) can be analyzed with the two-dimensional point-kick analysis method. In this paper, this method is applied

to analyze the CSR effect in a triple-bend achromat (TBA) with symmetric layout, which is commonly used in the

optics designs of energy recovery linacs (ERLs). A condition of cancelling the CSR linear effect in such a TBA

is obtained, and is verified through numerical simulations. It is demonstrated that emittance preservation can be

achieved with this condition, and to a large extent, has a high tolerance to the fluctuation of the initial transverse

phase space distribution of the beam.
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1 Introduction

Electron beams with high peak current (on the kilo-
ampere scale) and short bunch length (on the sub-
picosecond scale) are desired in high-brightness light
sources [1–4] and linear colliders [5]. In these machines,
when an electron bunch passes through a bending mag-
net, the emission of the coherent synchrotron radiation
(CSR) induces energy modulation along the bunch and
dilutes transverse emittance, leading to degradation of
the beam quality. This has strongly motivated theoreti-
cal [6–9] and numerical analyses [10–18] on CSR over the
past few decades.

One important topic among these studies is suppress-
ing the CSR-induced emittance growth in achromats.
Several theoretical methods have been proposed, such as
the R-matrix analysis [10, 11] and the Courant-Snyder
(C-S) formalism analysis [14], to evaluate the CSR ef-
fect. In the method of R-matrix analysis, 5-by-5 trans-
fer matrices are applied to calculate particle coordinate
deviations and emittance growth due to CSR in a lin-
ear regime. However, it is difficult to obtain a generic
scheme to suppress the CSR-induced emittance growth
with this method since the calculated CSR wake disper-
sion (i.e., the CSR-induced orbit deviation at the exit

of the achromat) is different for different concrete lattice
designs. On the other hand, in the C-S formalism analy-
sis, a single kick approximation of the CSR effect is used,
by assuming the CSR-induced orbit deviation after going
through a bending magnet to be ∆Xcsr=(∆x, ∆x′)=(Dx,
Dx′)δ(csr), where Dx and Dx′ are the dispersion function
and its derivative with respect to s at the center of the
dipole, and δ(csr) is the CSR-induced energy deviation
in a bending magnet. This rough approximation makes
it feasible to analyze the emittance growth, while result-
ing in somewhat different results from the more rigorous
R-matrix analysis.

To formulate the CSR-induced emittance growth in
both a rigorous and an explicit way, a novel method,
named 2D point-kick analysis [16, 17], was recently pro-
posed. This method adopts a 2D point-kick model of
the CSR effect in a bending magnet (see Eq. (2) below),
with which one can analyze the CSR-induced emittance
growth in only the (x, x′) 2D planes (similar to the C-S
formalism analysis), and obtain the same result as from
the R-matrix analysis. Moreover, in this analysis, the
transfer matrix of the beam line between adjacent dipoles
is treated as a whole, instead of considering the elements
one-by-one (as in the R-matrix analysis). As a result,
the CSR kick can be expressed in an explicit way, and
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the solution for zero CSR-kick provides a rather general
requirement on the optics design of the achromat. This
method will be briefly reviewed as follows.

In the steady-state (ρ/γ3
� σz � ρθ/2γ2+ρθ3/24)

approximation for a Gaussian line-charge distribution
beam, the CSR induced rms relative energy spread de-
pends linearly on both Lb and ρ2/3 [6, 18]

∆Erms=0.2459
eQµ0c

2

0
Lb

4πρ2/3σ4/3

z

, (1)

where γ, e, Q, ρ, σz, Lb, µ0, c0 represent the relativistic
Lorentz factor, the charge of a single particle, the bunch
charge, the bending radius of the orbit, the rms bunch
length, the bending path, the permeability of the vac-
uum, and the speed of light, respectively. It has been
verified through ELEGANT simulations [16] that this
relation applies well to the cases with θ ranging from 1◦

to 12◦ and ρ ranging from 1 to 150 m.
Therefore the CSR effect in a dipole was linearized by

assuming δ(csr)=kLb/ρ2/3, where k depends only on the
bunch charge Q and the bunch length σz, and is in the
unit of m1/3. In addition, it was shown that the CSR-
induced coordinate deviations after a passage through a
dipole can be equivalently formulated with a point-kick
at the center of the dipole (see Fig. 1), which is of the
form [16]

Xk=

(

ρ4/3k[θcos(θ/2)−2sin(θ/2)]

sin(θ/2)(2δ+ρ1/3kθ)

)

, (2)

where δ=δ0+δcsr, is the particle energy deviation at the
entrance of the dipole, with δ0 being the initial particle
energy deviation and δcsr being that caused by CSR in
the upstream path.

Fig. 1. Schematic layout of a symmetric TBA and
the corresponding physical model of the CSR ef-
fect in a TBA with three point-kicks.

Using this point-kick model and treating the trans-
portation of a particle between adjacent kicks as a whole,
the CSR-induced coordinate deviations in an n-dipole
achromat can be evaluated by analyzing the horizontal
betatron motion with n-point kicks. With this method,
the condition of cancelling the net CSR kick in a double-
bend achromat (DBA) with two identical dipoles has

been obtained [16],

Mc2c
∼=

(

−1 0

12/Lb −1

)

, (3)

where Mc2c is a 2-by-2 transfer matrix for the beam line
between the centers of the two dipoles of a DBA, and Lb

is the length of the dipole.
In this paper, the 2D point-kick analysis method is

expanded to study the CSR effect in a triplet-bend achro-
mat (TBA) with symmetric layout, and the linear CSR
effect cancellation condition is obtained. Details are pre-
sented in Section 2, then in Section 3, the condition found
is verified with ELEGANT simulations. It turns out that
the proposed condition is quite robust against the mis-
match of beam optics. Note that TBA is the minimum
configuration required to realize an isochronous cell (with
zero R56) and is usually adopted in the design of the
recirculation loop of energy recovery linacs (ERLs, see,
e.g., [19, 20]). In most cases, the bunch length is rarely
changed in these TBAs. For example, in both high cur-
rent and low emittance modes of the compact energy re-
covery linac in Japan, the variations of the bunch length
due to 0.1% RF voltage and phase error are below 1% in
the first TBA [21]. Thus, this method is reliable (which
is based on the assumption that the bunch length is con-
stant in a dipole) and the presented results will be im-
portant to the preservation of the beam quality in those
high-brightness ERLs.

2 Generic linear CSR-cancellation con-

dition for a symmetric TBA

In this section, we will present the derivation of the
linear CSR-cancellation condition for a TBA with sym-
metric layout (i.e., the distribution and strength of the
elements are all symmetric with respect to the center of
the TBA). Such a TBA is chosen based on the following
considerations: a symmetric TBA is always adopted in
practical designs of the recirculation loop of the ERLs;
and with symmetric layout, only a few decision variables
need to be determined, which makes it feasible to find
an explicit achromatic and linear CSR-cancellation con-
dition. As sketched in Fig. 1, the bending angles of the
first and the third dipoles are the same (denoted by θ1),
while that of the second dipole can be arbitrary (denoted
by θ2); the bending radii of these dipoles are the same
(denoted by ρ). According to the 2D point-kick analy-
sis, CSR kicks occur at the centers of the three dipoles
(denoted by 1, 2, 3, in Fig. 1), and between the adjacent
kicks only one 2-by-2 transfer matrix of the horizontal be-
tatron motion is considered. Without loss of generality,
the transfer matrix between point 1 and 2 is expressed
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as

M12=

(

m11 m12

m21 m22

)

, (4)

where the symplectic condition should be satisfied, i.e.,
detM12=1. Due to the symmetric layout, the matrices
for the two half sections are related to each other. The
matrix between point 2 and 3 (denoted by M23) is given
by [22]

M23=

(

m22 m12

m21 m11

)

. (5)

With these matrices and the CSR point-kicks, one
can evaluate the particle coordinate deviations in rela-
tion to δ0 and k, respectively, and the corresponding
emittance growth after passage through the TBA. For
simplicity, it is assumed that the initial particle coor-
dinates relative to the reference trajectory are X0=(x0,

x′

0
)T=(0, 0)T and the energy deviation is δ=δ0 (this as-

sumption is reasonable since the betatron motion of the
particle will not lead to additional emittance growth).

The coordinates remain zero until the particle ex-
periences the CSR-kick at point 1, where the particle
coordinates are given by

X1 = X0+Xk1=

(

ρ4/3k[θ1cos(θ1/2)−2sin(θ1/2)]

sin(θ1/2)(2δ0+ρ1/3kθ1)

)

=

(

−ρ4/3kr1

S1(2δ0+ρ1/3kθ1)

)

. (6)

where r1=2sin(θ1/2)−θ1cos(θ1/2), and S1=sin(θ1/2).
After passing through the section between point 1 and
2, the particle experiences the second kick,

X2=

(

x2

x′

2

)

=M12X1+Xk2=

(

kρ1/3[−(r2+r1m11)ρ+m12θ1S1]+2m12S1δ0

kρ1/3[−r1m21ρ+m22θ1S1+(2θ1+θ2)S2]+(2m22S1+2S2)δ0

)

, (7)

where r2=2sin(θ2/2)−θ2cos(θ2/2), and S2=sin(θ2/2). Similarly, the particle coordinate deviations at point 3 (after
the third kick) are

X3 =

(

x3

x′

3

)

=M23X2+Xk3=δ0

(

2m12(2m22S1+S2)

2m11(2m22S1+S2)

)

+kρ1/3

(

[−m22(r2+2r1m11)ρ+2m22m12θ1S1+m12(2θ1+θ2)S2]

[−(r2+2r1m11)ρm21+2(θ1+m11m22θ1+θ2)S1+m11(2θ1+θ2)S2]

)

. (8)

Note that in Xk2 and Xk3 (in Eqs. (7) and (8)), the en-
ergy spread δ grows to kρ1/3θ1+δ0 and kρ1/3(θ1+θ2)+δ0,
respectively.

One can see that the overall particle coordinate devia-
tions include two parts: the momentum dispersive terms
related to the initial energy deviation δ0 (the first term on
the right-hand side of Eq. (8)) and the CSR-dispersive
terms related to k (the second term on the right-hand
side of Eq. (8)). The above equation can therefore be
written as

x3=∆x3(δ0)+∆x3(csr),

x′

3
=∆x′

3
(δ0)+∆x′

3
(csr).

(9)

The conventional achromatic condition can be obtained
when ∆x3(δ0) and ∆x′

3
(δ0) are equal to zero,

m22=−
S2

2S1

. (10)

This indicates that in a TBA with symmetric layout,
the achromatic condition only depends on the bending
angles of the dipoles.

Substituting the achromatic condition and the sym-
plectic condition into Eq. (9), the CSR induced coor-
dinate deviations in a TBA with symmetric layout can

generally be expressed as

x3 = ∆x3(csr)=
1

2
kρ1/3[2m12(θ1+θ2)

+(r2+2r1m11)ρ/S1]S2,

x′

3
= ∆x′

3
(csr)=

1

2
kρ1/3[2m12(θ1+θ2)

+(r2+2r1m11)ρ/S1]
2S1+m11S2

m12

. (11)

In storage rings where the typical bunch length of the
electron beam is usually on the scale of 1 cm, the CSR
effect is too small to have an impact on the beams. How-
ever, in linac-driven ERLs with very short beams, the
CSR effect cannot be ignored, and if not well suppressed,
will cause evident growth in the geometric emittance.

The final geometric emittance (the geometric emit-
tance at the end of the TBA) in the presence of the CSR
effect can be estimated by

ε2 = (ε0βx+∆x2

3,rms
)(ε0γx+∆x′2

3,rms
)

−(ε0αx−∆x3,rms∆x′

3,rms
)2=ε2

0
+ε0·dε, (12)

dε = γ3∆x2

3,rms
+2α3∆x3,rms∆x′

3,rms
+β3∆x′2

3,rms
,
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where ε0 is the unperturbed geometric emittance and α3,
β3, γ3 are the C-S parameters at the center of the third
dipole of the TBA. In most cases dε�ε0, therefore the
growth in unnormalized and normalized emittance due
to CSR can be estimated by

∆ε=ε−ε0≈
1

2
dε,

∆εn=εn−εn0=γβ(ε−ε0)≈
1

2
γβdε,

(13)

where β is the particle velocity relative to the speed of
light, γ is the relativistic Lorentz factor, and the sub-
script n represents the normalized emittance. To achieve
a zero emittance growth (see Eqs. (11) and (12)), it is
required that [∆x3(csr), ∆x′

3
(csr)]T=(0, 0)T, from which

the linear CSR-cancellation condition can be obtained,

m11+
(θ1+θ2)S1

r1ρ
m12=−

r2

2r1

. (14)

In the particular case with θ1�1 and θ2�1 Eq. (14) can
be simplified as

m11+
6(θ1+θ2)

θ2
1ρ

m12
∼=−

θ3

2

2θ3
1

, (15)

where only the first significant terms with respect to θ1

and θ2 are kept.
Note that Eq. (14) (or Eq. (15)) only imposes a

general requirement of the transfer matrix of the beta-
tron transportation section, which suggests a generic and
easily-applied way to suppress the CSR-induced emit-
tance growth in a symmetric TBA, i.e., varying the
quadrupole strengths (and the position, if necessary) to
give a transfer matrix M12 in the form of

M12=











−
r2ρ+2m12(θ1+θ2)S1

2r1ρ
m12

1

m12

(

r2S2

4r1S1

+
m12(θ1+θ2)S2

2r1ρ
−1

)

−
S2

2S1











, (16)

where only one term m12 is variable. In addition, this
condition is tenable when the TBA degenerates to a DBA
by setting θ2=0. The transfer matrix between the cen-
ters of the first and the third dipoles can be evaluated,
giving the same form as in Eq. (3),

Mc2c = M23M12=

(

0 m12

−1/m12 −m12θ1S1/r1ρ

)

×

(

−m12θ1S1/r1ρ m12

−1/m12 0

)

=

(

−1 0

2θ1S1/r1ρ −1

)

∼=

(

−1 0

12/Lb −1

)

. (17)

where only the first significant terms with respect to θ1

are kept.

3 Theoretical verification and numerical

simulations

In this section, we will verify the proposed lin-
ear CSR-cancellation condition with ELEGANT simu-
lations. In these simulations, we consider a TBA con-
sisting of three identical dipoles with bending radii of 7
m and bending angles of 3

◦

. Under this circumstance,
the element m22 of the transfer matrix is equal to −0.5
(according to Eq. (10)), and the other elements are con-
trolled by varying the quadrupole strengths. The main
parameters of the electron beam for simulations are listed
in Table 1.

Table 1. Parameters of the electron beam and the
TBA used in the ELEGANT simulations.

parameter value

bunch charge/pC 500

norm. emittance/µm·rad 2

beam energy/MeV 1000

energy spread(%) 0.05

bunch length/µm 30

dipole bending radius/m 7

dipole bending angle/(◦) 3

In order to confirm that the condition found can re-
sult in minimum emittance growth, we investigate the
dependency of the final emittance on m11 by fixing m12.
The simulation results are shown in Fig. 2. In these
cases, m11/m∗

11
is varied from about 0.2 to 2, where m∗

11

is the solution of Eq. (15) and has the value of 8.058
when m12=−0.261 (rhombic points) and 34.127 when
m12=−1.058 (circular points). In order to make the an-
alytical emittance growth calculation easier, the optics
are also designed with symmetric C-S parameters in each
case. Through straightforward derivations, the final nor-
malized emittance growth in Eq. (13) can be obtained,
and is in the form

∆εn=2γβk2q2ρ8/3m∗2

11
(1−m11/m∗

11
)2/β2. (18)

From Fig. 2 it can be seen that the emittance growth
reaches a minimum as m11 is on or close to the optimal
value, which agrees reasonably well with the analytical
prediction. Note that the minimum ∆εn is not exactly
zero, but on the scale of 0.001 µm·rad. This is because
the nonlinear effect of the CSR wake is included in the
simulations, which becomes dominant as the linear CSR
effect is eliminated. However, compared with the rapid
increase in ∆εn as m11 deviates away from m∗

11
, the non-

linear effect is rather weak relative to the linear effect of
the CSR wake, and therefore with the proposed condition
the emittance growth in a TBA can be well controlled.
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Fig. 2. (color online) Variation of the final normal-
ized emittance through TBA with respect to m11/
m∗

11, for the cases with the term m12 being −0.261
(rhombic points) and −1.058 (circular points), re-
spectively. In all cases the achromatic condition
is satisfied. The dashed lines are the analytical
prediction from Eq. (19) and with a shift of the
minimum ∆εn.

As mentioned above, the CSR-cancellation condition
only imposes a requirement on the transfer matrix of
the betatron transportation section. In the following, we
will investigate the dependence of emittance suppression
on the initial phase space distribution of the beam (or
namely the initial C-S parameters). In most cases, sym-
metric optics are adopted in the design of TBAs in ERLs.
For example, the initial C-S parameters of the TBA
lattice with symmetric optics (and with m11 = −3.297,
m12=0.085 and other parameters as listed in Table 1)
are β0 = 4.61 m and α0 = 30. We vary the initial C-S
parameters, and then track the electron beam through
the TBA to record the corresponding emittance growth.
The results are presented in Fig. 3. One can see that
there is a gradual increase in final emittance as the initial
C-S parameters deviate from the nominal value. This is
probably due to the enhancement of the nonlinear effect
of the CSR wake along with the increase of the final C-S
parameters (see Fig. 4). For example, in an extreme case
with β0=4.61 m and α0=50, the final C-S parameters be-
come too large (βf=1846 m, αf =−11981) and the final
emittance increases by more than double. However, the
relative emittance growth keeps to below 1% when β0 is
varied by 0.5 m and α0 is varied by 2. This suggests that
the proposed CSR-suppression scheme is rather robust
against the fluctuation of the initial beam distribution
pulse by pulse.

Fig. 3. (color online) Numerical simulations by
scanning initial C-S parameters. The CSR-
suppression condition (Eqs. (10) & (14)) is en-
sured for the test TBA, with the elements of the
transfer matrix M12 being (−3.297, 0.085, 7.591,
−0.5) for (m11, m12, m21, m22), respectively. The
black star represents the case with symmetric op-
tics, with β0=4.61 m and α0=30.

Fig. 4. (color online) The final C-S parameter
βf with scanning β0 and α0. The black star
represents the case with symmetric optics, with
β0=4.61 m and α0=30.

4 Conclusion

In this paper, the 2D CSR-kick analysis method is ap-
plied to study the suppression of CSR-induced emittance
growth in a TBA cell with symmetric layout, and the ex-
plicit achromatic and linear CSR-cancellation condition
for the TBA are derived. Since the linear effect of the
CSR wake is cancelled, the emittance growth due to CSR
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can be well controlled with the proposed condition, even
with optics mismatch from a nominal symmetric design.
Finally, it is worth mentioning that the 2D point-kick
analysis assumes the bunch length has little change in
the achromat, and thus the results presented in this pa-

per are more appropriate to a transport line with small
momentum compactions, such as an ERL recirculation
loop, than to the specified bunch compressors. Further
study will be continued and extended in order to explore
the case with large variation of the bunch length.
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