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Ab initio Monte Carlo shell model calculations for 7Li and
9Li low-lying spectra *
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Abstract: The low-lying spectra of 7Li and 9Li are investigated within an ab initio Monte Carlo Shell Model

(MCSM) employing a realistic potential obtained via the Unitary Correlation Operator Method (UCOM). The MCSM

calculations in a 4-major-shells model space for the binding energy and mass quadrupole moment of 7,9Li show good

convergence when the MCSM dimension reaches 20. The excitation energy of the Jπ =1/2− state for 7Li and the

magnetic moments for 7,9Li ground states in the MCSM with a treatment of spurious center-of-mass motion are close

to the experimental data. Correct level ordering of Jπ =3/2− and 1/2− states for 7,9Li can be reproduced due to the

inclusion of three-body correlations in the MCSM+UCOM. However, the excitation energy of Jπ =1/2− state for 9Li

is not reproduced in the MCSM mainly due to the lack of larger model space.
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1 Introduction

One of the central challenges for nuclear physics is
to understand nuclear structure from first principle cal-
culations. Much progress on these ab initio investiga-
tions have been made based on the development of stud-
ies of the reputed bare nucleon-nucleon (NN) potentials
and nuclear many-body theory in the last decade. For
example, a two-body potential can be constructed phe-
nomenologically by fitting experimental data on NN scat-
tering, such as the Argonne V18 potential [1], the CD-
Bonn potential [2] and the Nijmegen potential [3]. Alter-
natively, a consistent two- and many-body interactions
can also be constructed in the framework of chiral ef-
fective field theory using the symmetries and the effec-
tive degrees of freedom of low-energy QCD as a guiding
principle, such as the chiral N3LO potential [4–6]. By
using these realistic nuclear interactions, ab initio nu-
clear many-body calculations have been performed. In
Green’s Function Monte Carlo (GFMC) calculations the
exact ground-state wave function is calculated by treat-
ing the many-body Green’s functions in a Monte Carlo
approach [7–9]. Another ab initio approach for nuclei up
to A=14 is the No-Core Shell Model (NCSM) [10–12].

However, the straightforward application of those re-
alistic interactions in nuclear many-body calculations is
still difficult due to the strong short-range repulsion and

the tensor correlations. The Unitary Correlation Oper-
ator Method (UCOM) is one of the methods to tackle
this problem by introducing a unitary transformation
such that the transformed many-body states contain
the information on the dominant correlations in nuclear
many-body system [13–15]. In the UCOM approach two
unitary transformation operators are defined: a central
correlation operator and a tensor correlation operator,
which correspond to the two most important correla-
tions: the central correlations induced by the strong
short-range repulsion and the tensor correlations, respec-
tively. Through a unitary transformation of the Hamil-
tonian, a soft phase-shift equivalent two-nucleon interac-
tion can be obtained.

In the shell model calculations, the direct diagonal-
ization of the Hamiltonian matrix in the full valence-
nucleon Hilbert space is difficult, as the dimension of
such a space becomes larger and larger when one moves
from light nuclei to heavier nuclei. As one way to over-
come this difficulty, the stochastic approaches have been
introduced. Among them, the Shell Model Monte Carlo
(SMMC) method has been successfully proposed [16].
Nevertheless, the SMMC is basically suitable for the
ground state and thermal properties, and suffers from
the so-called “sign problem”. As a completely different
approach, the Quantum Monte Carlo Diagonalization
(QMCD) method has been proposed for solving quan-
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tum many-body systems with a two-body interac-
tion [17–19]. The QMCD can describe not only the
ground state but also the excited states, including their
energies, wave functions and hence transition matrix
elements. Thus, on the basis of the QMCD method,
the Monte Carlo Shell Model (MCSM) has been intro-
duced [20]. An extrapolation method in the Monte Carlo
Shell Model has been proposed recently [21]. In paral-
lel, a revised MCSM method is also outlined for future
directions [22–24].

For the first time, ab initio Monte Carlo shell model
(MCSM) has been successfully applied to study the low-
lying spectra of light nuclei by employing a realistic po-
tential obtained via UCOM [25]. The magnetic moment
of Jπ=2+

1 state for 10Be has also been studied in terms of
the single-particle orbits under the same framework [26].

7,9Li are also good candidates for testing ab initio cal-
culations, as there are adequate experimental data both
in the ground state and in the excited states, for in-
stance, excitation energies of two Jπ=3/2−,1/2− states,
as well as the magnetic moments for the ground states.
In this work, the low-lying spectra of 7,9Li are investi-
gated with the MCSM plus UCOM. In Section 2, the
theoretical framework for the MCSM is briefly outlined.
The numerical details, results, and discussion of many-
body calculation results are presented in Section 3. Fi-
nally, a brief summary is given in Section 4.

2 Theoretical framework

The main idea of the MCSM is to diagonalize the
Hamiltonian in a subspace spanned by the MCSM basis,
which is generated in a stochastic way. We begin with
the imaginary-time evolution operator

e−βH , (1)

where H is a given general (time-independent) Hamilto-
nian and β∝T−1 is a real number with T being analogous
to a temperature. If this operator in Eq. (1) acts on a
state |Ψ (0)〉, one obtains

e−βH |Ψ (0)〉=
∑

i

e−βEici|ψi〉, (2)

where Ei is the i-th eigenvalue of H, |ψi〉 is the corre-
sponding eigenstate and ci its amplitude in the initial
state:

|Ψ (0)〉=
∑

i

ci|ψi〉. (3)

For β large enough, only the ground and low-lying states
survive. But the actual handling is very complicated for
H containing a two-body (or many-body) interaction.

The Hubbard-Stratonovich (HS) transformation [27,
28] can be used to ease the difficulty mentioned above.

We then move to the formula

|Φ(σ)〉∝e−βh(σ)|Ψ (0)〉, (4)

where h(σ) is a one-body Hamiltonian obtained through
the HS-transformation and σ is a set of random num-
bers (auxiliary fields). The right-hand-side of this rela-
tion can be interpreted as a mean to generate all basis
vectors needed for describing the ground state and the
low-lying states. For different values of the random vari-
able, σ, one obtains different state vectors, |Φ(σ)〉, by
Eq. (4). These vectors are labeled as candidate states
and selected as MCSM basis by a procedure of energy
comparison [20].

During the MCSM generation of the basis vectors,
symmetries, e.g. rotational and parity symmetry, are re-
stored before the diagonalization as more basis vectors
are included. All MCSM basis states are projected onto
good parity and angular momentum quantum numbers
by acting with the corresponding projection operators.
We diagonalize the Hamiltonian in a subspace spanned
by those projected basis vectors. The number of the
MCSM basis states is referred to as the MCSM dimen-
sion. The basis generation process for general cases is
outlined in Ref. [20].

As more than one major shell is included in the
MCSM calculation, the spurious center-of-mass motion
must be accounted for. The Lawson’s prescription is
adopted to suppress the spurious center-of-mass motion
in good approximation for major shell truncation [29].
The total Hamiltonian can be separated into an intrinsic
part and a center-of-mass part

H ′ =Hint.+βc.m.Hc.m., (5)

where Hint. is the intrinsic Hamiltonian. The Hc.m. is
defined by

Hc.m. =
P 2

2AM
+

1

2
MAω2

R
2−

3

2
~ω, (6)

where R and P are the coordinate and momentum of the
center of mass, respectively. In general, by taking suf-
ficiently large values of βc.m., the spurious components
become smaller and smaller for the low-lying eigenstates
of H ′.

With these wave functions without spurious center-
of-mass motion, any physical quantities can be evaluated
in the MCSM. For example, the nuclear magnetic mo-
ments are calculated with

µ =

√

4π

3
〈J,M=J |O(M1)|J,M=J〉

=

√

4π

3

(

J 1 J

−J 0 J

)

〈J ||O(M1)||J〉, (7)

where J and M is the quantum numbers of total an-
gular momentum and corresponding third component of
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the nucleus. The total M1 transition operator is defined
as:

O(M1)=

√

3

4π

[

lgl
q+sgs

q

]

µN, (8)

where µN is the nuclear magneton. The g-factors gl
q and

gs
q are the orbital and spin g-factor, respectively. The

free-nucleon values for the g-factors are adopted with
gl
p=1, gl

n=0, gs
p=5.586, and gs

n=−3.826.
Under the same theoretical framework, the electric

quadrupole moments can be evaluated with:

Q =

√

16π

5
〈J,M=J |O(E2)|J,M=J〉

=

√

16π

5

(

J 2 J

−J 0 J

)

〈J ||O(E2)||J〉, (9)

where the E2 transition operator is defined as:

O(E2)=r2Y 2
µ (r̂)eqe, (10)

where Y 2
µ are the spherical harmonics and q stands for

proton q=p or neutron q=n. The eq are the electic
charges for the proton and neutron in units of e. In our
calculations, we take ep = 1 and en = 0, for the proton
and neutron, respectively.

3 Results and discussion

The model space of the MCSM is spanned by a har-
monic oscillator basis truncated with respect to the un-
perturbed single-particle energies with emax=2n+l. Our
calculations are performed in the model space emax =3,
namely 4 major shells. We use UCOM-transformed real-
istic two-nucleon interactions (hereinafter referred to as
VUCOM) as the input potential in the MCSM. The trans-
formed potentials are derived from the N3LO interac-
tion. The Coulomb interaction in all of our calculations
is neglected throughout this work for simplicity. The pa-
rameter βc.m. of Lawson’s prescription for treatment of
spurious center-of-mass motion is adopted as 10.

The convergence of the MCSM calculations in the
emax=3 model space should be examined at first. Fig. 1
shows the binding energies of the 3/2− (full circles) and
1/2− states (open circles) of 7Li as a function of the
MCSM dimension for the emax =3 model space, as well
as the 3/2− (red full triangles) and 1/2− states (black
open triangles) of 9Li. If we evaluate the energy dif-
ference ε between results corresponding to the last two
consecutive MCSM dimensions, we obtain ε=39 keV for
the 3/2− and 14 keV for the 1/2− states of 7Li, 29 keV
for the 3/2− and 124 keV for the 1/2− states in the case
of 9Li. The relative accuracy of these excitation ener-
gies is 0.2%, 0.07%, 0.2%, and 0.9%, respectively. All of
them are less than 1%, and indicates a reasonably con-
verged MCSM calculations. Usually, the diagonalization

of the MCSM is performed in a subspace comprised of
101–2 optimally generated basis states. The size (dimen-
sion) of this subspace is quite small compared to that of
the entire Hilbert space taken in the direct diagonaliza-
tion in the conventional shell model. This advantage will
be even more obvious for heavier nuclei by the fact that
the full diagonalization in the emax=3 is hardly feasible
with other calculational techniques available presently.
Meanwhile, it can be found that the MCSM results for
the total energy in the emax=3 model space present some
difference compared with the experimental data [30]. For
example, the binding energy of 7Li ground state of the
MCSM is −18.624 MeV, which is about 20 MeV devia-
tion in comparison with the experimental one (−39.242
MeV). In order to investigate this difference, we also per-
form the MCSM calculations in the emax=2 model space
for the 7Li ground state. This energy is about 10 MeV
higher than that in the emax=3 model space. We believe
that the larger model spaces will improve dramatically
the total energy in the MCSM calculations. However, it
is difficult to perform these kind of calculations in larger
model spaces due to the numerical technique limitations
at present.

Fig. 1. (color online). Binding energy of the Jπ =
3/2− (full symbols) and 1/2− (open symbols)
states for 7Li (circles) and 9Li (triangles) as a
function of the MCSM dimension in the emax =3
model space.

Besides binding energy, the convergence of other
physical observables, for example, mass quadrupole mo-
ments in the MCSM calculations should also be checked
in the emax = 3 model space. In Fig. 2, the expecta-
tion values of mass quadrupole moments of neutrons
(full symbols) and protons (open symbols) for 7Li (cir-
cles) and 9Li (triangles) respectively as a function of the
MCSM dimension in the emax = 3 model space. The
mass quadrupole moments can be evaluated with Eq. (9)
by replacing the E2 transition operator r2Y 2

µ (r̂)eqe as
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r2Y 2
µ (r̂). One finds that beyond MCSM dimension 10,

those mass quadrupole moments reach stable values.
Both nuclei 7Li and 9Li have negative mass quadrupole
moments for neutrons and protons in the ground state.

Fig. 2. (color online). The expectation values of
mass quadrupole moment of neutrons (full sym-
bols) and protons (open symbols) states for 7Li
(circles) and 9Li (triangles) as a function of the
MCSM dimension in the emax = 3 model space,
where eq=1 for protons and eq=0 for neutrons.

Figure 3 shows energy levels of the 1/2− excited
states of 7,9Li calculated by the MCSM in comparison
with the experiment data [30]. It is found that the exci-
tation energy (506 keV) of 1/2− state for 7Li in MCSM
with proper treatment of spurious center-of-mass mo-
tion shows good agreement with the experimental value
(477.6 keV). However, our calculation underestimates
the excited energy for 9Li 1/2− state to a large extent.
The large excitation energy of 9Li 1/2− state suggests a
possible neutron sub-shell closure at N=6. However, our
MCSM calculation in the emax=3 model space do not re-
produce this property due to the deficiency of large emax

orbits contribution, which might imply the high emax in-
truder states are crucial for the neutron sub-shell clo-
sure. In addition, the ab initio calculation, for instance,
GFMC can not present correct level ordering of 3/2− and
1/2− states for 7Li with only two-body interaction. The
right level sequence can be reproduced with the including
of three-body forces in their calculations. Although the
three-body forces are not included in our MCSM calcu-
lation with UCOM-transformed interaction, the correct
level ordering can be presented since the three-body cor-
relations are taken into account in the unitary transfor-
mation.

The electromagnetic moments are also investigated in
the MCSM. Table 1 shows the nuclear magnetic moments
and electric quadrupole moments of the ground state for
7Li and 9Li calculated with Eqs. (7) and (9) under the
MCSM in comparison with the experiment values as well

as NCSM with CDB2k interaction results. Our results
reproduce the nuclear magnetic moments of 7Li and 9Li
quite well. By choosing the bare effective charge (ep=1
and en = 0), the MCSM presents a better description
of electric quadrupole moment than that of NCSM with
only a two-body interaction. It is possible that the high
emax intruder states, which are important to reproduce
the total energy, are not crucial for 7,9Li electromagnetic
moments.

Fig. 3. (color online) Excitation energy of the 1/2−

states for 7Li (left) and 9Li (right) calculated by
the MCSM (red lines) in the emax=3 model space
in comparison with the experimental data [30]
(black lines).

Table 1. Nuclear magnetic moments and electric
quadrupole moments of the ground state for 7Li
and 9Li in the MCSM calculation as well as the
NCSM calculation results with CDB2k interac-
tion [31] and the experimental data [31, 32]. The
bare effective charge (ep=1 and en=0) is adopted
in our calculation.

isotope Exp. MCSM NCSM

µ/µN
7Li 3.256427(2) 3.116 3.01(2)
9Li 3.434(5) 3.183 2.89(2)

Q/efm2

7Li −4.00(3) −3.770 −3.20(22)
9Li −3.06(2) −3.452 −2.66(22)

4 Summary

In summary, the low-lying excited states of 7Li and
9Li are investigated within an ab initio MCSM employ-
ing a realistic potential obtained via the UCOM. The
MCSM calculations emax=3 model space for the binding
energies and mass quadrupole moments of 7,9Li show
good convergence when the MCSM dimension reaches
20. The excited states are studied in terms of excita-
tion energy, level ordering and electromagnetic moments.
The excitation energies of the Jπ = 1/2− state for 7Li
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and the magnetic moments for 7,9Li ground states in
the MCSM with a treatment of spurious center-of-mass
motion are close to the experimental data. Correct level
ordering of Jπ =3/2−, 1/2− states for 7,9Li is presented
due to the partial inclusion of three-body correlations
in the MCSM+UCOM. The high emax orbits might be

important to investigations of possible neutron sub-shell
closure of 9Li.
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