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Triaxial dynamics in the quadrupole-deformed rotor *
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Abstract: The triaxial dynamics of the quadrupole-deformed rotor model of both the rigid and the irrotational

type are investigated in detail. The results indicate that level patterns of the two types of model can be matched

with each other to the leading order of the deformation parameter β. In particular, it is found that the dynamical

structure of the irrotational type with most triaxial deformation (γ = 30◦) is equivalent to that of the rigid type

with oblate deformation (γ=60◦), and the associated spectrum can be classified into the standard rotational bands

obeying the rotational L(L+1)-law or regrouped into a new ground- and γ-band with odd–even staggering in the new

γ-band, commonly recognized as a signature of the triaxiality. The differences between the two types of the model

in this case are emphasized, especially in the E2 transitional characteristics.
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1 Introduction

The quantum rotor has been widely applied to ex-
plain rotational excitations in molecules and nuclei [1–
4]. For heavy or medium mass nuclei, it is often assumed
that there is a quadrupole-deformed surface of these el-
lipsoidal nuclei [5–7], and then rotational excitations in
these nuclei can be described by rotational dynamics of
an ellipsoid with quadrupole deformation.

Although the quantum rotor is illustrated in many
textbooks [5, 6], a detailed comparison of rotational
dynamics of different types of quadrupole-deformed ro-
tor [7] is still absent. This is an omission which should be
addressed, especially when the triaxial rotor [4], which
has been widely used as a basic and simple description
of nuclear collectivity, has been realized microscopically
within the SU(3) shell model [8–10] and algebraically
in the interacting boson model [11–13]. Particularly,
our recent analysis [13] shows that the E2 properties
in the SU(3) image of the quadrupole-deformed rotor
are closer to those obtained from the rigid type rotor.
On the other hand, the values of moments of inertia ex-
tracted from experiments may approach those obtained
from the irrotational type rotor. The dynamical differ-
ences between the two types of rotor in an axial-deformed
case is well known [5–7]. However, the situations in the
triaxial-deformed case remain to be investigated. More
recently, a triaxial rotor model with independent iner-
tia and E2 tensors was suggested [14–17], which provides
new insights into the physics of triaxial rotations. As the

triaxial rotation is explicitly defined in the quadrupole-
deformed rotor, it is necessary to clarify the differences
between the triaxial dynamics generated by the different
types of quadrupole-deformed rotor Hamiltonian, espe-
cially by seeing that both the rigid and irrotational type
rotor are used to describe nuclear collectivity [13, 18]. In
this work, we will present a systematic analysis of the
similarities and differences of level patterns and E2 tran-
sitional characteristics of the irrotational type model and
those of the rigid type model.

2 Quadrupole-deformed ellipsoids and

their moments of inertia

If only quadrupole-deformation is considered, the nu-
clear surface in the body-fixed frame (the principal axis
system) may be described as [5, 6].

R(θ,φ)=R0

[

1+
∑

ν

aνY2ν(θ,φ)

]

, (1)

where R0 is the radius of the nucleus with spherical
shape, {aν} represent components of the quadrupole de-
formation with

a1=a−1=0, a2=a−2 , (2)

and Y2ν(θ,φ) is the spherical harmonics. It is more con-
venient to use another set of parameters [5, 6] introduced
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by A. Bohr, defined by

a0 = βcosγ,

a2 = a−2=
1√
2
βsinγ, (3)

where β represents the total deformation with
∑

ν

|aν |2=β2 , (4)

and γ represents the degree of triaxiality.
The deviation of R(θ,φ) from R0 is given by

∆R(θ,φ) = R(θ,φ)−R0

=

√

5

16π

R0β[cosγ(3cos2θ−1)

+
√

3sinγsin2θcos2φ]. (5)

It can be proven that all quadrupole-deformed shapes
can be covered by γ within [0, π

3
]. Thus the deviations of

R(θ,φ) from R0 along the principal axes

∆R1 = R1−R0=R
(

π

2
,0

)

−R0 ,

∆R2 = R2−R0=R
(

π

2
,
π

2

)

−R0 , (6)

∆R3 = R3−R0=R(0,φ)−R0 ,

can be summarized as

∆Rλ=

√

5

4π

R0βcos

(

γ−2λπ

3

)

with λ=1, 2, 3. (7)

Specifically, one may find

∆R1=∆R2=−
√

5

16π

R0β, ∆R3=

√

5

4π

R0β, (8)

at γ=0;

∆R1=∆R3=

√

5

16π

R0β, ∆R2=−
√

5

4π

R0β, (9)

at γ= π

3
;

∆R1=0, ∆R2=−∆R3=−
√

15

16π

R0β, (10)

at γ = π

6
. If only β > 0 is allowed, the above results

indicate that γ = 0 represents the prolate shape, γ = π

3

represents the oblate shape, and γ = π

6
corresponds to

the most triaxial shape.
Although the deformation parameters β and γ are

not observables, one can judge the geometrical shape of
a deformed nucleus from its rotational spectrum if and
only if the nucleus is assumed to be rigid. The rotor
Hamiltonian is given by [4, 14]

Hrot=
1

2=1

L2
1+

1

2=2

L2
2+

1

2=3

L2
3 , (11)

where Lα is the projection of the angular momentum
along the α-th body-fixed principal axis and =α is the

corresponding moment of inertia. In the following, only
rigid or irrotational ellipsoids are assumed to discuss the
β- and γ-dependence of the moments of inertia.

For a rigid ellipsoid with uniform mass density distri-
bution, the moments of inertia along the principal axes
may be expressed as

=1 = Γ1=
M

5
(R2

2+R2
3),

=2 = Γ2=
M

5
(R2

1+R2
3), (12)

=3 = Γ3=
M

5
(R2

1+R2
2),

where M is the mass of the ellipsoid. Substituting Ri

with i=1, 2, 3 given by Eq. (6) into (12), one has

Γ1 = 2C

[

1+Dcos

(

γ+
π

3

)

+D2

(

1

4
cos

(

2γ−π

3

)

+
1

2

)]

,

Γ2 = 2C

[

1+Dcos

(

γ−π

3

)

+D2

(

1

4
cos

(

2γ+
π

3

)

+
1

2

)]

,

Γ3 = 2C

[

1+Dcos(γ−π)+D2

(

1

4
cos(2γ+π)+

1

2

)]

,

(13)

where C =
MR2

0

5
and D =

√

5β2

4π
, which can be further

simplified as

Γλ=2C

[

1−Dcos

(

γ−2λπ

3

)

−D2

2
cos2

(

γ+
λπ

3

)

+
3D2

4

]

(14)
with λ=1, 2, 3.

It can easily be found that Γ1 =Γ2>Γ3 at γ=0 cor-
responds to the prolate shape, Γ1=Γ3<Γ2 at γ= π

3
cor-

responds to the oblate shape, and Γ2 >Γ1 >Γ3 at γ = π

6

corresponds to the most triaxial shape. It is obvious
that the dynamical shape characterized by the moments
of inertia 1

2=α

with α=1, 2, 3 is always consistent with
the geometric shape characterized by the Bohr variable
γ for the rigid type ellipsoid. Moreover, when Γ1 = Γ2

or Γ1 = Γ3, the spectrum of (11) obeys the rotational
L(L+1)-law within each rotational band. Therefore, the
spectrum of the prolate or the oblate rigid ellipsoid is
called regular.

On the other hand, for an irrotational ellipsoid with
the same mass density distribution, one may write the
moments of inertia along the principal axes as [5]

=1 = Γ ′
1=

M

5

(R2
2−R2

3)
2

R2
2+R2

3

,

=2 = Γ ′
2=

M

5

(R2
1−R2

3)
2

R2
1+R2

3

, (15)

=3 = Γ ′
3=

M

5

(R2
1−R2

2)
2

R2
1+R2

2

.
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Specifically, the moments of inertia of the irrotational el-
lipsoid shown in (15) may be expressed as functions of β
and γ according to Eq. (6) as

Γ ′
1 =

C

[

2
√

3Dsin

(

γ−2π

3

)

−
√

3D2

2
sin

(

2γ+
2π

3

)

]2

2+D2−2Dcos

(

γ−2π

3

)

−D2

2
cos

(

2γ+
2π

3

) ,

Γ ′
2 =

C

[

2
√

3Dsin

(

γ−4π

3

)

−
√

3D2

2
sin

(

2γ+
4π

3

)

]2

2+D2−2Dcos

(

γ−4π

3

)

−D2

2
cos

(

2γ+
4π

3

) ,

Γ ′
3 =

C

[

2
√

3Dsinγ−
√

3D2

2
sin2γ

]2

2+D2−2Dcosγ−D2

2
cos2γ

,

(16)

which may be rewritten uniformly as

Γ ′
λ=

C

[

2
√

3Dsin

(

γ−2λπ

3

)

−
√

3D2

2
sin

(

2γ+
2λπ

3

)]2

2+D2−2Dcos

(

γ−2λπ

3

)

−D2

2
cos

(

2γ+
2λπ

3

) ,

(17)
for λ=1, 2, 3. Since D or β is usually a small quantity,
to the leading order of D, the moments of inertia of the
irrotational ellipsoid are given by

Γ ′
λ=6CD2sin2

(

γ−2λπ

3

)

. (18)

By submitting the collective mass parameter defined as
B= 3

8π
MR2

0, one may get the familiar form with [6]

Γ ′
λ=4Bβ2sin2

(

γ−2λπ

3

)

, (19)

which can also be obtained from the derivation shown in
Refs. [5, 6] by using the quantization procedure.

According to (19), in comparison to the rigid type
shown in (14), Γ ′

1 =Γ ′
2 =3Bβ2 and Γ ′

3 =0 in the prolate
case at γ=0, Γ ′

1=Γ ′
3=3Bβ2 and Γ ′

2=0 in the oblate case
at γ= π

3
, and Γ ′

2=Γ ′
3=Bβ2 and Γ ′

1=4Bβ2 in the most tri-
axial case at γ= π

6
. It should be noted that the moments

of inertia of the irrotational type ellipsoid at γ = π/6
is symmetric with respect to the 2nd and 3rd principal
axes exchange though the geometric shape is most triax-
ial according to (10). It is clear that the dynamical shape
characterized by the moments of inertia 1

2=α

is inconsis-
tent with the geometric shape characterized by the Bohr
variable γ for the irrotational type ellipsoid in either the
oblate case or the most triaxial case.

3 Comparison of the rigid and irrota-

tional ellipsoid dynamics

The quantum dynamics of a rotor described by (11)
is determined by relative magnitudes of the moments of
inertia. As a consequence, differences and similarities in
the spectral patterns and E2 transitional characteristics
of the rigid ellipsoid and those of the irrotational ellipsoid
can be analyzed accordingly.

It should be noted that, no matter whether a quan-
tum ellipsoid with exact axial-symmetry is rigid or irro-
tational, its arbitrary rotation around its axial-symmetry
axis is quantum mechanically undetectable due to the ad-
ditional O(2) symmetry. In this extreme case, its spec-
trum involves only the K=0 band as clarified in Ref. [6],
of which the levels obey the L(L+1)-law, where L and K
is the total angular momentum and its projection onto
the symmetric principal axis.

As shown in the previous section, the axially-
symmetric situations occur at γ=0 and π/3 correspond-
ing to the prolate and oblate shape, respectively, for the
rigid type and at γ = 0, π/6, and π/3 for the irrota-
tional type. As a result, one cannot tell whether the
ellipsoid is rigid or irrotational from its spectrum when
γ = 0 or γ = π/3. Although the axial-symmetric situa-
tion is unrealistic in describing the rotational motion of
deformed nuclei, a comparison of spectral characteristics
of the rigid ellipsoid with those of the irrotational one
in this extreme case is instructive. Actually, up to some
scaling factor, the spectra of the two types of ellipsoid
are the same at γ=0 because the relation =1==2>=3 is
satisfied for both types. Moreover, there is no distinction
of the irrotational ellipsoid at γ=0 from that at γ=π/3
in the spectra because the energy levels generated from
the two are the same. In contrast, the scaling of exci-
tation energies of the prolate ellipsoid is different from
that of the oblate one in the rigid case as shown from the
moments of inertia given in (14). An interesting point
is that, up to some scaling factor, the spectrum of the
irrotational ellipsoid in the most triaxial case at γ=π/6
coincides with that of the rigid one in the oblate case at
γ =π/3. Therefore, the spectral characteristics of ellip-
soids of different type but of different geometric shape
may be quite similar, even when the axial symmetry is
slightly broken.

In fact, if only the leading order of D is considered,
the moments of inertia for the rigid case shown in (14)
may be expressed as

Γλ=2C

[

1−Dcos

(

γ−2λπ

3

)]

, (20)

since D =
√

5β2

4π
is generally a small quantity with

0<D�1, while the moments of inertia for irrotational
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case shown in (18) can be rewritten as

Γ ′
λ=3CD2

[

1−cos

(

2γ−4λπ

3

)]

. (21)

Comparing (20) with (21), it is obvious that, up to some
scaling factor, there is a one-to-one correspondence be-
tween the moments of inertia of the rigid type shown
in (20) at γ = 2t with 0 6 t 6 π/6 and those of the ir-
rotational type shown in (21) with the 1st and the 2nd
principal axis exchange at γ=t, even for D�1.

Fig. 1. (color online) The quantities RI and RII

with D =0.05, 0.13, 0.30 are shown as functions
of γ (in degree).

Furthermore, it can be shown that relative magni-
tudes of the moments of inertia given by (20) at γ=π/6
are similar to those shown in (21) at γ=π/12 since the
relations =a >=b >=c and (=a+=c)/2==b are satisfied
for both cases with any given D value, where (a, b, c)
represents (1, 2, 3) for the rigid case and (2, 1, 3) for
the irrotational case. To illustrate the effect of D (or β)
on the level structure, we take two typical energy ratios,
E2+

2
/E2+

1
and E3+

1
/E2+

1
, as examples. Explicitly, the two

energy ratios can be analytically expressed as

RirroI ≡
E2+

2

E2+
1

=
3+

√

5+4cos(6γ)

3−
√

5+4cos(6γ)
, (22)

RirroII ≡
E3

+
1

E2+
1

=
6

3−
√

5+4cos(6γ)
, (23)

for those solved from the irrotational type rotor and

RrigI ≡
E2+

2

E2+
1

=
4−D2+

√

D2(4+D2+4Dcos(3γ))

4−D2−
√

D2(4+D2+4Dcos(3γ))
, (24)

RrigII ≡
E3+

1

E2+
1

=
2(4−D2)

4−D2−
√

D2(4+D2+4Dcos(3γ))
(25)

for those solved from the rigid type rotor. It is clear that
the energy ratios in the irrotational case depend on only
the γ variable but the ratios in the rigid case depend on
both the γ and β variables. Further, one can define the
quantities RI and RII as RI(γ) = RrigI(γ)/RirroI(γ) and
RII(γ)=RrigII(γ)/RirroII(γ) to test the D dependence of
the difference between the two types of rotor, with the
calculated results given in Fig. 1. As clearly seen from
Fig. 1, the values of both RI and RII increase monoton-
ically as γ and D increase, which indicates that the dif-
ference in energy ratios between the two types of model
defined above may become small for large β and γ defor-
mations.

Fig. 2. Some low-lying levels in the ground- and
γ-band of the prolate case for the rigid (rig) ellip-
soid (left) and the irrotational (irro) one (right),
in which L+

ξ denotes the ξ-th positive-parity state
with the angular momentum quantum number L,
and all the energy values have been normalized to
the first 2+ energy in the ground band.

A further comparison between the two types of el-
lipsoid should be made for both level patterns and E2
transitional characteristics. To obtain the energy levels
and E2 transitional rates, numerical diagonalization of
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the Hamiltonian (11) should be carried out. Eigenfunc-
tions ΨK

LM of the general rotor Hamiltonian (11) may be
expanded in terms of the Wigner D-functions with

Ψ ξ
LM =

∑

K

Cξ
KΨK

LM , (26)

where M is the quantum number of the angular mo-
mentum projection onto the third axis in the laboratory
frame, {Cξ

K} are the expansion coefficients, ξ is an addi-
tional quantum number needed to label different eigen-
states with the same quantum number L and M , and

ΨK
LM =

√

2L+1

16π
2(1+δK0)

[D(L)∗
M,K(θ1,θ2,θ3)

+(−1)LD(L)∗
M,−K(θ1,θ2,θ3)], (27)

in which D(L)
M,K(θ1, θ2, θ3) is the Wigner D-function of

Euler angles θ1, θ2, and θ3. The Hamiltonian (11) un-
der the basis spanned by (27) is block-diagonalized. The
block-diagonalized result is due to the invariance of (11)
under rotations by π around the principal axes [9]. These
rotations, which can be written as Tα=e−iπLα with α=1,
2, and 3, together with the identity operation, generate
the Vieregruppe (D2) group. The invariance means that
[Hrot, Tα]= 0 for α =1, 2, and 3. Generally, wavefunc-
tions that carry the irreps of the D2 can be constructed
by a combination of Wigner D-functions with

ΨλµK
LM =

√

2L+1

16π
2(1+δK0)

[D
(L)∗
M,K(θ1,θ2,θ3)

+(−1)λ+µ+LD
(L)∗
M,−K(θ1,θ2,θ3)], (28)

where λ and µ are integers. The D2 group has four rep-
resentations denoted as A, B1, B2, and B3, respectively,
in which only the A-type representation is allowed for
even–even nuclei [9]. In the A-type case, both λ and µ
should be taken as even integers, by which (28) is re-
duced to (27) with K = 0 or K = even, in which only
positive K values need to be considered. The multiplic-
ity of L is given as (L+2)/2 for L=even and (L−1)/2 for
L=odd. As shown in [8], the allowed L and K are L=0,
2, 4, 6, ···, for K =0 and L=K, K+1, K+2, K+3, ···,
for K=even.

The D2 symmetry holds for both the asymmetric and
the symmetric cases of (11). In the dynamically axially-
symmetric cases, however, in addition to the D2 symme-
try, there is the additional O(2) symmetry. The O(2)
group consists of rotations around the symmetric prin-
cipal axis. When =1 ==2 6==3 for example, the eigen-
functions of (11) in this case are those shown in (27).
However, (11) in this case should also be invariant under
arbitrary rotation round the 3rd principal axis, namely,
[Hrot, e−iφL3 ]=0 for arbitrary φ∈ [0,2π]. The additional
O(2) symmetry requires that only K =0 is allowed, be-

cause the eigenfunctions given by (27) under the O(2)
rotation transforms as

e−iφL3ΨK
L,M =

√

2L+1

16π
2(1+δK0)

[e−iφKD(L)∗
M,K(θ1,θ2,θ3)

+(−1)LeiφKD(L)∗
M,−K(θ1,θ2,θ3)], (29)

which is invariant only when K=0. The additional O(2)
symmetry explains why only the ground band with K=0
emerges for the axially-symmetric rotor Hamiltonian [6].
Actually, the axially-symmetric rotor Hamiltonian in this
case is invariant under the O(2)

⊗

D2 transformation,

where
⊗

stands for the semi-direct product.
As discussed above, there is a one-to-one correspon-

dence between the moments of inertia of the rigid type
at γ=2t and those of the irrotational type at γ=t, so it
would be interesting to give a close comparison between
the two types of rotor under such situations. Specifically,
we compare the rotational features of an ellipsoid of the
rigid type with that of the irrotational type at several
special γ points, of which situations with exact axial-
symmetry are avoided because the exact axial-symmetry
is unrealistic in describing deformed nuclei. In order to
avoid exact axial-symmetry, a very small quantity ε is al-
ways assumed to be added to the γ values corresponding
to the exact axially-symmetric cases, though the results
calculated with γ+ε and those with γ are approximately
taken as the same. Moreover, besides the ground band,
other bands in this case also show up with the near axial-
symmetry assumption.

Table 1. Some typical B(E2) values for the two
types of ellipsoid in the prolate case correspond-
ing to the case shown in Fig. 2, where all transi-
tions are normalized to B(E2;2g → 0g), of which
Lg and Lγ denote the states with angular mo-
mentum quantum number L in the ground band
and those in the γ-band, respectively. In the cal-
culations, the γ value in the quadrupole operator
(31) has been taken the same as that used in the
corresponding moments of inertia.

Li→Lf rig irro Li→Lf rig irro

2g→0g 100 100 2γ→0g 0 –

4g→2g 143 143 2γ→2g 0 –

6g→4g 157 157 3γ→2γ 179 –

8g→6g 165 165 4γ→3γ 133 –

Some low-lying levels in both the ground band and
the γ-band of the rigid ellipsoid at γ = 2t and those of
the irrotational ellipsoid at γ=t with t≈0, t=π/12, and
t≈π/6 are shown in Figs. 2–4, respectively, where β=0.5
is set for all these cases. B(E2) values of the above cases
for both the intra- and inter-band transitions are calcu-
lated according to

B(E2;Li→Lf)=
|〈Lf‖Q̂‖Li〉|2

2Li+1
, (30)
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where the quadrupole operator is given as [5, 6]

Q̂u=
3Ze

4π

R2
0 β[cos(γ)D(2)

u,0+
1√
2
sin(γ)(D(2)

u,2+D(2)
u,−2)], (31)

in which e is assumed to be the effective charge. Un-
less specified separately, the β and γ values in (31) are
taken to be the same as those in the moments of inertia
for a given type of ellipsoid. Some typical B(E2) values
of both the intra- and inter-band transitions of the rigid
ellipsoid at γ =2t and those of the irrotational ellipsoid
at γ = t for t ≈ 0, t = π/12, and t ≈ π/6 are shown in
Tables 1–3, respectively.

Fig. 3. The low-lying levels in the ground- and γ-
band of the triaxial case at t=π/12 for the rigid
(rig) ellipsoid (left) and the irrotational (irro) one
(right), where all the levels are normalized to the
2+
1 energy in each case.

Table 2. Some typical B(E2) values for the two
types of ellipsoid in the triaxial case correspond-
ing to the case shown in Fig. 3, where all tran-
sitions are normalized to B(E2;2g → 0g). In the
calculations, the γ value in the quadrupole oper-
ator (31) has been taken the same as that used in
the corresponding moments of inertia.

Li→Lf rig irro Li→Lf rig irro

2g→0g 100 100 2γ→0g 73 6

4g→2g 98 145 2γ→2g 6 15

6g→4g 99 165 3γ→2γ 179 179

8g→6g 101 179 4γ→3γ 207 123

As shown in Fig. 2, both the ground band and the γ-
band for the two types of ellipsoids of the prolate shape
follow the L(L+1)-law exactly except that the band head
energy of the γ-band is infinite in the irrotational case
due to Γ ′

3 = 0 at γ ≈ 0. Notably, E4g
/E2g

= 3.33 is the
direct evidence that the levels in the ground band obey
the L(L+1)-law. For the γ-band, it is convenient to use

the ratio defined as Rγ =
E4γ

−E2γ

E3γ
−E2γ

, of which the ratio

Rγ = 2.33 if the L(L+1)-law is satisfied. It should be

noted that levels in the ground band and those in the
γ-band in the prolate case are grouped by those with
Kπ = 0+ and those with Kπ = 2+, respectively, where
K is the projection of angular momentum onto the 3rd
principal axis. In this case, the Hamiltonian is nearly
axially-symmetric [5] because =1 ≈ =2 > =3 is always
satisfied for both the rigid and irrotational type when
γ≈0. Furthermore, the normalized results given in Ta-
ble 1 show that the allowed transitional rates for the two
types of ellipsoid in the prolate case are also the same,
while the inter-band transitions for the irrotational type
are prohibited.

Fig. 4. The low-lying levels in the ground- and γ-
band of the t≈π/6 case for the rigid (rig) ellipsoid
(left) and the irrotational (irro) one (right), where
all the levels are normalized to the 2+

2 energy in
each case.

For the triaxial case, the results calculated for the
rigid type at γ =π/6 and the corresponding results cal-
culated for the irrotational type at γ = π/12 are given
in Fig. 3 and Table 2. It can be seen from Fig. 3 that
the level patterns for the rigid type are quite similar to
those for the irrotational type except that the γ-band
head energy is relatively high. Particularly, the odd–even
staggering, which is regarded as a signature of a triaxial
rotor [11, 19], appears in the γ-band of both types of
ellipsoid as indicated by braces in Fig. 3. In addition,
Rγ = 2.52 for the rigid type and Rγ = 2.42 for the irro-
tational type, which indicates that levels in the γ-band
of the two types of ellipsoid deviate noticeably from the
L(L+1)-law. On the other hand, the E2 transitional
rates given in Table 2 show that the B(E2, L+2→L)
value of intra-band transition in the ground band grad-
ually changes slightly with the increasing of L for the
rigid case, but increases noticeably with the increasing
of L for the irrotational case.

The results calculated for the rigid type at γ ≈π/3
and the corresponding results for the irrotational type
at γ≈π/6 are shown in Fig. 4 and Table 3. It is clearly
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shown in Fig. 4 that the levels in the ground band of
both the rigid and irrotational type ellipsoid follow the
L(L+1)-law exactly. Since Rγ=2.33 for both types, the
levels in the γ-band of both types of ellipsoid also fol-
low the L(L+1)-law exactly. A notable feature of both
types is that the levels with L even in the γ-band are
all lower in energy than the corresponding ones in the
ground band as shown in Fig. 4. It should be empha-
sized that the Hamiltonian (11) in this case is nearly
axially-symmetric because Γ1≈Γ3<Γ2 for the rigid type
and Γ ′

2 ≈Γ ′
3 <Γ ′

1 for the irrotational type. As a conse-
quence, the levels with η = 0 and those with η = 2 for
the rigid case are taken to be in the ground band and
in the γ-band respectively, where η is the projection of
angular momentum onto the 2nd principal axis. For the
irrotational type, the levels with α = 0 and those with
α=2 are taken to be in the ground band and in the γ-
band respectively, where α is the projection of angular
momentum onto the 1st principal axis because the 1st
principal axis is the symmetric axis in this case. Thus, it
is easy to understand why the levels in each band shown
in Fig. 4 all follow the L(L+1)-law exactly. In contrast
to the prolate case shown in Table 1, in which B(E2)
values of the intra-band transitions within the ground
band for both rigid and irrotational type are the same,
the E2 transitional characteristics of the rigid and irro-
tational type shown in Table 3 are completely different.
It is clearly shown for the rigid type case that the inter-
band transitions between the ground- and γ-bands are

Table 3. Some typical B(E2) values for the two
types of ellipsoid in the t≈π/6 case correspond-
ing to those shown in Fig. 4, where all transitions
are normalized to B(E2;2g → 0g). In the calcu-
lations, the γ value in the quadrupole operator
(31) has been taken the same as that used in the
corresponding moments of inertia.

Li→Lf rig irro Li→Lf rig irro

2g→0g 100 0 2γ→0g 0 100

4g→2g 143 1 2g→2γ 0 143

6g→4g 157 4 3γ→2γ 179 0

8g→6g 165 6 4γ→3γ 133 1

Table 4. Some typical B(E2) values for the two
types of ellipsoid corresponding to the case shown
in Fig. 5, where all transitions are normalized to
B(E2;2g1 →0g1). In the calculations, the γ value
in the quadrupole operator (31) has been taken
the same as that used in the corresponding mo-
ments of inertia.

Li→Lf rig irro Li→Lf rig irro

2g1→0g1 0 100 2γ1 →0g1 100 0

4g1→2g1 0 141 2γ1 →2g1 0 143

6g1→4g1 0 173 3γ1 →2γ1 0 179

8g1→6g1 0 191 4γ1 →3γ1 133 1

completely prohibited, but the intra-band transitions are
allowed and noticeable, while the situation in the irrota-
tional type case is completely the inverse, in which the
intra-band transitions in each band are nearly prohib-
ited, but the inter-band transitions between two bands
are allowed and noticeable.

Fig. 5. The low-lying levels in the ground- and γ-
band of the t≈π/6 case for the rigid (rig) ellipsoid
(left) and the irrotational (irro) one (right), where
the ground- and the γ-bands are reassigned ac-
cording to the energy value of the levels with the
same L shown in the text and labeled by g1 and
γ1 respectively. All the levels are normalized to
the 2+

1 energy in each case.

Although the Hamiltonian for the irrotational type
case at γ = t = π/6 is nearly axially-symmetric just as
that for the rigid type case at γ ≈ π/3 corresponding
to the oblate shape, the irrotational type at γ ≈π/6 is
often referred to as being triaxial [5, 19] because the
corresponding geometrical shape is indeed most triaxial
at γ=π/6. Actually, the levels shown in Fig. 4 can also
be regrouped into a new ground- and a new γ-band ac-
cording to the energy value of the levels with the same L.
Specifically, the new ground band consists of the lowest
levels with L=0 or even, while the new γ-band consist of
the next-to-lowest levels with L=even or the lowest ones
with L=odd, which is shown in Fig. 5. One can observe
that the level pattern shown in Fig. 4 and that shown
in Fig. 5 are quite different. The odd–even staggering
appears in the new γ-band for both types of ellipsoid,
and the level ordering in the γ-band for the irrotational
type case is even reversed, which are all considered to be
signals of triaxiality [11, 19]. For E2 transitions, it is
shown in Table 4 that the intra-band transitions in both
the new ground- and the new γ-band are almost prohib-
ited for the rigid type case. In contrast, the intra-band
transition rates in the ground band for the irrotational
case present a monotonic increasing with the increasing
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of L, as shown in Table 4. Hence, it is recognized that
the triaxiality shown in Fig. 5 emerges from the rear-
rangement of the levels of the oblate spectrum of the
irrotational type case shown in Fig. 4, which results in a
different band assignment.

4 Summary

In summary, we have presented a detailed compar-
ison of dynamical shape characterized by the moments
of inertia of the rigid type ellipsoid to that character-
ized by those of the irrotational type. It is shown that,
up to some energy scaling factor, the level patterns of
the rigid ellipsoid at γ = 2t are similar to those of the
irrotational type at γ = t to the leading order of the
deformation parameter. Numerical investigation of the
excitation energies and B(E2) values for the two types
of the model was also carried out, in which the triaxial
situations were particularly emphasized. It was shown in
Fig. 2, Fig. 3 and Table 1, Table 2 that both level pat-

terns and E2 transitional characteristics of the two types
of the model with prolate and triaxial geometric shape
are quite similar. On the other hand, it was shown in
Fig. 4 and Fig. 5 that the level patterns of the rigid type
model with γ=π/3 are similar to those of the irrotational
type with γ=π/6. However, the E2 transitional charac-
teristics of the types of rotor are quite different in such
cases as seen in Table 3 and Table 4. In addition, the
results also indicate that the excited levels in the rigid
type model with γ=π/3 and the irrotational type model
with γ = π/6 may be regrouped into new ground- and
γ-bands, with which the spectrum looks quite similar to
that of a triaxial rotor. As a result, a similar rotational
spectrum may be generated from different types of model
with different γ deformation parameters. Based on the
low-lying levels observed in most deformed nuclei, the
band assignment shown in Fig. 5 seems more realistic
than that shown in Fig. 4, namely the γ-band head en-
ergy seems to always be higher than the energy of the
first 2+ state in the ground band.
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