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Effect of long-range correlation on scaling behavior of normalized
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Abstract: Within the framework of Ginzburg–Landau theory, the effect of multiplicity correlation between the

dynamical multiplicity fluctuations is analyzed for a first-order phase transition from quark–gluon plasma to hadrons.

Normalized factorial correlators are used to study the correlated dynamical fluctuations. A scaling behavior is found

among the factorial correlators, and an approximate universal exponent, which is weakly dependent on the details of

the phase transition, is obtained.
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1 Introduction

It is known that ultra-relativistic heavy-ion collisions
are the only way to study the properties of quantum chro-
modynamics (QCD) under extremely high energy den-
sity in the laboratory. During such collisions, a new state
of matter, quark–gluon plasma (QGP), which is theoret-
ically predicted, might be formed with extremely high
energy and matter density. Soon afterwards, the system
will cool with its subsequent expansion. Eventually the
temperature and energy density become low enough for
the hadronization process, and a phase transition may
occur from QGP to hadrons.

The quarks and gluons, however, are not detectable
directly in experiments because of the color confinement
of QCD. We have to search for signals of the phase tran-
sition from the final particles. Phase transitions have
always been a subject of great interest in high energy
physics. The critical point marks the boundary of the
first and second order phase transition between hadronic
and QCD matter in the QCD phase diagram. The ex-
istence of a critical point has been predicted by some
lattice QCD calculations [1–3], and the possibility of ob-
serving evidence for the critical point has inspired various
experiments in different laboratories [4–6] and a lot of
related discussion on the possible signals [7–13]. So far,
however, the order of the phase transition is still an open
issue. QGP may undergo a first order or second order
transition, or even a cross-over between different states

with different temperature and chemical potentials. Ad-
ditionally, this transition may not even be recognizable
as a critical phenomenon, since hadronization takes place
on the surface while the system expands.

The hadrons in the final state are strongly correlated
and a variety of fluctuations appear. It is known that
fluctuations are large for statistical systems near their
critical points, hence the study of multiplicity fluctua-
tions of hadrons produced in high-energy heavy-ion col-
lisions is of importance to study the phase transition [14–
18].

GinzburgõLandau theory is a phenomenological
model theory initially describing superconductors with-
out examining their microscopic properties [19, 20]. Over
the past two decades, this model has been used to study
multiplicity fluctuations about first- and second-order
phase transitions [21–33], and regarded as a possible
means to reveal some features of phase transitions. Ref.
[21–30] are examples of using this model to reveal dy-
namical multiplicity fluctuations in one bin. The QGP
state, as observed experimentally, is strongly correlated
according to experiments. Such correlations may influ-
ence the pattern of dynamical fluctuations for different
parts of the phase space. Therefore, the analysis of corre-
lation to the dynamical fluctuations is of importance. In
Ref. [34] the scaling behavior among the factorial corre-
lators is studied for a second-order phase transition from
QGP to hadrons. In this article, we will try to investigate
the scaling behavior of the factorial correlators of multi-
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plicity distribution within an extended Ginzburg–
Landau model for a first-order phase transition for the
QGP system.

This article is organized as follows. In Section 2, the
normalized factorial correlators for multiplicity fluctua-
tions are derived for a first-order phase transition within
the framework of the Ginzburg–Landau model. Section 3
is devoted to our numerical results and some conclusions.
In Section 4, a concise summary is presented.

2 Factorial correlators in the Ginzburg–

Landau model for a first-order phase

transition

Consider two small bins in phase space with equal
size δ (it can be an interval of a one-dimensional variable,
such as rapidity δy, or one in two-dimensional space, such
as δyδη). Let the particle numbers in these two bins be
n1, n2 respectively for an event. The moments of mul-
tiplicity difference distribution has been investigated in
Refs. [31–33], assuming that the fluctuations in the two
bins are uncorrelated.

For the purpose of measuring the correlated fluctua-
tions in the two bins, we can write the factorial correla-
tors, which can be defined in a similar way to Ref. [34],
as

fq1q2 = 〈n1(n1−1)···(n1−q1+1)n2(n2−1)···(n2−q2+1)〉

= Z−1

∫∫

Dφ1Dφ2(δ|φ1|)q1 (δ|φ2|)q2e−F (φ1,φ2), (1)

where

Z=

∫∫

Dφ1Dφ2e
−F (φ1,φ2), (2)

where 〈···〉 is the average over events, e−F (φ1,φ2) is the
dynamical factor for the process, and φ1, φ2 describe
the probability for the systems in the two bins in the
pure states |φ1〉 and |φ2〉 respectively. According to
the Ginzburg–Landau model, the free energy function
F (φ1,φ2) can be written, for a first-order phase transi-
tion, as

F (φ1,φ2)=δ

2
∑

i=1

(a|φi|2+b|φi|4+c|φi|6)

+λδ(|φ1|2−|φ2|2)2. (3)

As in Ref. [21], a ∝ (T −Tc) and is negative for the
hadron phase, whereas c is positive. b is negative for the
first-order transition. The last term λδ(|φ1|2−|φ2|2)2 in
Eq. (3) is introduced to parameterize the effect of corre-
lation between particle production in the two bins. The
parameter λ is used to describe the strength of interac-
tions in the two bins. If λ>0, the free energy F is smaller
when |φ1| is closer to |φ2| and the particle production in
the two bins is positively correlated. Otherwise, particle

production in the two bins is anti-correlated for λ < 0.
The absolute value of λ should decrease as the distance
between the two bins in a phase space increases. Fur-
thermore, as the correlation length of the QGP system
is longer near the critical point, λ may also have a re-
lation with the temperature departure from the critical
point. Its value can then mirror the degree of separation
from the critical temperature, if the distance between the
two bins in phase space is fixed. This paper is confined
only to λ>0 but the extension to λ<0 is obvious.

The normalized correlated factorial moments can be
defined as

Fq1q2 =fq1q2/[(f1,0)
q1 (f0,1)

q2 ]. (4)

Since Fq1q2 will be constants of about 1 if there are only
statistical fluctuations, the moments can be used to filter
the statistical fluctuations. The so-called intermittency
behavior is for a phenomenon in which Fq1q2 ∝ δ−αq1q2

with αq1q2 > 0. What is more, one can further study
whether there exists a scaling law among Fq1q2 ,

Fq1q2∝F
βq1q2

22 , (5)

even when the intermittency behavior cannot be ob-
served. If there exists no correlation between multiplicity
fluctuation in the two bins, i.e. λ=0, then the factorial
moments are simply

Fq1q2 =Fq1Fq2 , (6)

with Fq being the normalized factorial moments for mul-
tiplicity fluctuations in one bin. Then the scaling behav-
ior among Fq1q2 is the same as among Fq . If there exists
correlation between the multiplicity fluctuations in the
two bins, the factorization shown by Eq. (6) is not valid,
and then whether the scaling behaviors in Eq. (5) are
still valid is a problem that needs to be solved.

By defining

Jq(z1,z2)=

∫

∞

0

dyyqe−y3+z1y+z2y2

(7)

the factorial normalized moments can be finally written
as

Fq1q2 =

∫

∞

0

dxxq1e−x3+wx+vx2

Jq2(u,v)
[
∫

∞

0

dxxe−x3+wx+vx2

J0(u,v)

]q1

·

[
∫

∞

0

dxe−x3+wx+vx2

J0(u,v)

]q1+q2−1

[
∫

∞

0

dxe−x3+wx+vx2

J1(u,v)

]q2 , (8)

where u = w +
√

wsx,v =
√

wt, s = 2λ/
√

|ac|, t =

−(b+λ)/
√

|ac|, and w=−a δ
2

3

c
1

3

. Thus w can be regarded

as a measure of the bin size.
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Since only the first-order transition is considered in
this paper, a<0, b<0, c>0. If one supposes λ>0, then
w>0, s>0, but t may be negative or positive. From the
definition of Jq in Eq. (7) , we can get iterative relations
as follows:

J2(z1,z2)=
1

3
+

1

3
(z1J0(z1,z2)+2z2J1(z1,z2)),

Jq(z1,z2)=
1

3
[(q−2)Jq−3(z1,z2)+z1Jq−2(z1,z2)

+2z2Jq−1(z1,z2)].

For simplicity only the case for q1 =q2 is discussed, and
a more general case is left for later study.

3 Numerical results and discussion

From the above relations, we can calculate the nor-
malized factorial correlators Fqq as a function of w (or
the bin size resolution δ) with pre-specified s and t.

In order to get numerical results for the factorial cor-
relators, we first fix the parameters s and t both equal
to 0.2 and analyze the dependence of Fqq as functions of
−lnw on the bin size, with q ranging from 2 to 7. The
results are shown in Fig. 1. As displayed in this figure,
with the decrease of bin size δ (or parameter w), i.e. the
increase of −lnw in the figure, Fqq increase monotoni-
cally. This can be explained as follows. For larger bins,
different dynamical fluctuations perhaps counteract each
other, which renders them less observable.

Fig. 1. The dependence of Fqq on bin size (repre-
sented by w), for q from 2 to 7, with parameters
s and t fixed at 0.2.

As discussed in Ref. [21], for a self-similar dynamical
process, the moments Fqq will be a power law function of

bin size δ or parameter w, i.e. Fqq∝w−φq . It is obvious
that intermittency behavior is not observed from Fig. 1,
since the curves are not linear for the log–log coordinate.

The similar behaviours of Fqq in Fig. 1 imply a quite
simple relation between F22 and Fqq . A power-law rela-
tion between F22 and Fqq for different values of q can be
reached

Fqq∝F
βq

22 , (9)

which is quite general, for Eq. (9) can still hold even if the
law of intermittency is violated. The relation displayed
in Eq. (9), namely the scaling behavior, can be observed
in Fig. 2 for s=0.2, t=0.2 and q from 3 to 7, since all the
curves in the figure can be well approximated by linear
lines.

Fig. 2. Scaling behaviour between Fqq and F22, for
q from 3 to 7, and s and t fixed at 0.2.

The exponent βq is dependent on q, parameters s and
t. To find an exponent that is independent of the details
of our model, we can present βq as a function of q−1. The
result is shown in Fig. 3 in log–log scale. Additionally,
we also plot a linear fit in this picture, and immediately
get

βq∝(q−1)γ (10)

with γ=1.293, which depends only on the values of pa-
rameters s=0.2, t=0.2.

This result is close to γ = 1.306 as reported in
Ref. [21]. The difference between them may be ascribed
to the selection of range of bin size because the value
of γ depends very weakly on the range of −lnw for the
power-law fitting. If the upper limit of −lnw for the fit-
ting is larger (corresponding to smaller bin size), then γ
will be slightly larger. In this article, the range of −lnw
is from −1.2 to 3.2. If the lower limit is fixed, and the
upper limit is extended to a higher value, for example
3.7, then γ=1.303.
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Fig. 3. Relation between βq and q, for q from 3 to
7 with s and t fixed at 0.2. This relation can fit
the scaling behavior βq∝(q−1)γ , with γ=1.293.

Fig. 4. Dependence of γ on s with parameter t

fixed at three different values −0.5, 0 and 0.5.

The next task is to study whether the same scaling
behavior can be found for other values of s and t. We
have analyzed some different values for s and t, and ob-
tained the corresponding βq and γ using the same proce-
dure as outlined above. We come to the conclusion that

the scaling relation Fqq∝F
βq

22 is valid for other values of
s and t also.

As is depicted in Fig. 4 and Fig. 5, we also find that
the exponent value γ of Eq. (10) depends weakly on pa-
rameter s in the range from 0 to 1.0 and parameter t
between −0.5 and 1.0. γ is about 1.29±0.015 for other
values of s and t in these two figures. Compared to the
case of no interaction, i.e. s=0, it can be clearly seen that
the exponent γ is very weakly dependent on the details
of interaction and only sensitive to the phase transition.
Consequently, it can be regarded as a well-observable
quantity to characterize the nature of phase transition.

Fig. 5. Dependence of γ on t with parameter s

fixed at 0.2, 0.4 and 0.6.

4 Summary

We have studied the scaling behavior of the normal-
ized factorial correlators for correlated multiplicity fluc-
tuations in a first-order transition from QGP to hadrons,
and found a universal scaling exponent γ =1.29±0.015,
which is nearly independent of the dimension of phase
space and the details of interactions. Therefore, it pro-
vides a practical quantity that can characterize the dy-
namical fluctuations during the phase transition.
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