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Band head spin assignment of superdeformed bands in 86Zr
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Abstract: Two parameter expressions for rotational spectra viz. variable moment of inertia (VMI), ab formula and

three parameter Harris ω2 expansion are used to assign the band head spins (I0) of four rotational superdeformed

bands in 86Zr. The least-squares fitting method is employed to obtain the band head spins of these four bands in

the A ∼ 80 mass region. Model parameters are extracted by fitting of intraband γ-ray energies, so as to obtain

a minimum root-mean-square (rms) deviation between the calculated and the observed transition energies. The

calculated transition energies are found to depend sensitively on the assigned spins. Whenever an accurate band

head spin is assigned, the calculated transition energies are in agreement with the experimental transition energies.

The dynamic moment of inertia is also extracted and its variation with rotational frequency is investigated. Since a

better agreement of band head spin with experimental results is found using the VMI model, it is a more powerful

tool than the ab formula and Harris ω2 expansion.
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1 Introduction

The discovery of superdeformed states in nuclei is
one of the most remarkable discoveries of the 20th cen-
tury, since the nuclei are exposed to extreme conditions
of deformation and angular momentum in order to ob-
tain superdeformation. The existence of superdeforma-
tion was predicted by Strutinsky [1] and later confirmed
experimentally by Twin et al. [2] in the 152Dy nucleus.
With the development of large γ-ray detectors, new mass
regions of superdeformation have been explored. Vari-
ous superdeformed (SD) bands are currently available in
the A ∼ 190,150,130 and 80 mass regions. Usually, SD
bands are identified by transitions from equally spaced
energy levels, which results in a series of γ-ray spectra.
However, the spins of SD bands were not established
experimentally until the discovery of γ-rays connecting
states of yrast SD bands 194Hg(1) to normal deformed
(ND) states [3]. Soon after, the spins and excitation
energies of yrast SD band 194Pb(1) [4–6] and 194 Hg(3)
[7] were established. Besides such exceptions, the esti-
mated spins of other SD bands in different mass regions
have uncertainties of ≈ 1− 2~. The level spin determi-
nation of superdeformed states is crucial to understand
the physics behind them. In the past few years, many
approaches have been made to assign the spins of SD
bands [8–11]. Microscopic models such as the exponen-
tial model [12], cranked shell model [13], cranking Bohr-

Mottelson Hamiltonian [14] etc. have also been used to
assign reliable spins to SD bands.

Superdeformation spectroscopy has provided us with

much information regarding the behaviour of moments of
inertia (MOI) in SD nuclei. Two types of MOI character-

ize nuclei in SD states, viz. kinematic (=(1)) and dynamic

MOI (=(2)). Since =(1) depends upon spin proposition,

=(2) is frequently studied in SD states. A smooth rise

of =(2) with increasing rotational frequency (~ω) is ob-
served in the A∼ 190 mass region whereas in the A∼ 150
mass region, different behaviour of =(2) with ~ω is ob-
served. A smooth rise of =(2) with ~ω in A ∼ 190 is in-

terpreted as alignment of both high-N quasiprotons and
quasineutrons and reduction in pairing [15, 16]. The pro-
jected shell model (PSM) interpreted [17] this smooth
rise in MOI as a combination of the Coriolis antipair-
ing effect (CAP) effect and rotation alignment of high-j
pairs. An interesting feature of =(2) in the A∼ 190 mass
region is the observation of “flat bands” where =(2) does
not display a rise with ~ω. Pauli blocking [18] of in-
truder quasiproton and quasineutron is held responsible
for the reduced slope of =(2). Microscopic models such
as PSM also reveal the interesting features of SD bands
in the lower mass region. Application of PSM to A∼ 60
reveals [19] that alignment of g9/2 proton and neutron
pairs dominates, which results in low level densities near
the Fermi level. Also, anomalies in the MOI of SD bands
in 132 Ce was illustrated [20] as the intersection of four
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bands at a point where the MOI lose intensity rapidly.
Experimentally, kinematic and dynamic moments of in-
ertia can be extracted from the observed Eγ transition
energies by the difference quotient.

Encouraged by SD band availability in the higher
mass region (A∼ 190,150) and motivated by predictions
of cranked Strutinsky calculations, numerous searches
have been undertaken to discover SD nuclei in the lower
mass region (A ∼ 80). However, these searches were
hampered by various experimental difficulties. With the
advent of large γ-ray detectors (Eurogam I array), Bak-
tash et al. [21] in 1995 provided the first evidence of high
spin superdeformation in the lower mass region with par-
ticle numbers N,Z ≈ 40. Large deformations in this
mass region are stabilized through a decrease in sur-
face energy and more rapid decrease in Coulomb energy.
In general, most of the nuclei are axially symmetric in
shape, but the discovery of triaxial superdeformed bands
in 163,165,167Lu [22–24] and 171Ta [25] opens a new regime
of SD bands where collective rotations are possible about
all the three axes involving three unequal moment of in-
ertia (=x > =y 6= =z). A triaxial SD band A ∼ 80 mass
region was found by Sarantites et al. [26]. They ob-
served a total of four bands in 86Zr, out of which three
(86Zr(1), 86Zr(2) and 86Zr(4)) were found to be triaxial
SD bands. Through the decay of 86Zr(1) to ND states
they estimated spin I0 = 21.7± 1.5~. However, reliable
spins of other SD bands were not possible using the same
method.

Currently, many theoretical methods, like Bohr-
Mottelson’s I(I +1) expansion [27], Harris ω2 expansion
[28, 29], the ab formula [30–33], variable moment of in-
ertia (VMI) [34], variation of moments of inertia with
angular momentum [35] etc., are available to provide a
reliable way for spin assignment. In this paper, we have
evaluated the spins of all four bands of 86Zr using the
VMI model, ab formula and Harris ω2 expansion.

2 Rotational energy formulae

2.1 Variable moment of inertia model

Mariscotti et al. [34] proposed the VMI model, which
gives energy level with angular momentum (I) as the sum
of the potential energy term ∝ (=I−=0)

2 (where =0 rep-
resents the ground state moment of inertia (MoI) ) and
the rotational energy term ~

2(I(I+1))/2=I . The two pa-
rameter VMI model defines each nucleus by band head
moment of inertia (=0) and restoring force constant (C).
The energy of a level with spin (I) is given by (taking
~ = 1)

EI = E0 +
I(I +1)

2=I

+
C(=I −=0)

2

2
. (1)

The moment of inertia (=I) of the nucleus is calculated
from the equilibrium condition

∂E(=I)

∂=I

, (2)

which yields

=3
I −=2

I=0−
I(I +1)

2C
= 0. (3)

This cubic equation has one real root for any positive
value of =0 and C. From Eq. (1) and Eq. (3) we get

EI = E0 +

[

I(I +1)

2=0

][

1+
I(I +1)

4C(=0)3

]

. (4)

Since intraband energies and intensities are the only
spectroscopic properties whose information are available
for superdeformed bands, one may choose to fit Eγ tran-
sitions as:

Eγ = E(I)−E(I−2). (5)

Using Eq. (4) and Eq. (5) the transition energy for
superdeformed bands is expressed as

Eγ(I −→ I−2) =
[I(I +1)−(I−2)(I−1)]

2=0

+
[I(I +1)]2− [(I−2)(I−1)]2

8C(=0)4
. (6)

The parameters =0 and C can be obtained by fitting the
Eγ transitions for the superdeformed cascade. The quan-
tity σ, which provides the softness of the nucleus, can be
derived using Eq. (3) as follows:

1

=I

d=I

dI
= [(2I +1)/2C(=I)

2(3=I −2=0)]. (7)

For the particular case of I = 0, we get

σ =

[

1

=I

d=I

dI

]

I=0

=
1

2C(=0)3
. (8)

2.2 The ab formula

From experimental level systematics and alterna-
tively from nuclear hydrodynamics, Holmberg and Lipas
[30] derived the two parameter ab formula

E(I) = a
{

√

1+bI(I +1)−1
}

, (9)

where a and b are the fitting parameters.

The same expression was derived by Wu et al. [31, 32]
using the Bohr Hamiltonian. Using Eq. (5) and Eq.
(9), we get

Eγ(I)≡Eγ(I −→ I−2) =

a
[

√

1+bI(I +1)−
√

1+b(I−2)(I−1)
]

. (10)

114103-2



Chinese Physics C Vol. 40, No. 11 (2016) 114103

The parameters a and b are obtained by least-squares
fitting of observed transition energies. Using parameters
a and b, the kinematic and dynamic moments of inertia
are extracted from them as follows

=(1) ==0

[

1−
(~ω)2

a2b

]

−1/2

, (11)

=(2) ==0

[

1−
(~ω)2

a2b

]

−3/2

, (12)

where =0 =
~

2

ab
is the band head moment of inertia. Ro-

tational frequency (~ω) is defined as

ω =
1

~

dE

dIx

≈
1

~

dE

dI
.

Since ~ω is not the directly observed quantity, it is esti-
mated [36] from the observed E2 transition energies by
the difference quotient

~ω(I) = [Eγ(I)+Eγ(I +2)]/4000. (13)

2.3 Harris ω2 expansion

Harris [28, 29] showed that the nuclear rotation en-
ergy can be expanded in an even power series of rota-
tional frequency rather than I(I +1) as follows,

E(ω) = αω2 +βω4 +γω6 +δω8 + ... (14)

Here only three parameters are taken. Hence we can
write

E(ω) = αω2 +βω4 +γω6. (15)

Using the relation between energy E and spin I

dE

dω
=

dE

dI

dI

dω
= ~ω=(2), (16)

=(2) takes the form

=(2) = 2α+4βω2+6γω4(~2MeV−1). (17)

This can be rewritten as

=(2) = A+Bω2 +Cω4, (18)

since =(2) ≈ ~
dI

dω
. Spin can be obtained by integrating

=(2) with respect to ω and we get

I = Aω+(B/3)ω3+(C/5)ω5 + i0, (19)

where i0 is the constant of integration and known as
aligned angular momentum. In the A∼ 190 mass region,

for odd-A, nuclei i0 can take either 0 or
1

2
value.

The dynamic moment of inertia can be estimated from
the following relations [36]:

=(2)(I) = 4000/[Eγ(I +2)−Eγ(I)], (20)

where Eγ(I) is the energy difference between the (I+2)th

and (I)th level. The uncertainty for the last significant
digit in =(2) is calculated as

[

√

(∆Eγ(I+2))2+(∆Eγ(I))2/Eγ(I+2)−Eγ(I)

]

×=(2)(I),

where ∆Eγ(I) is the uncertainty in intraband γ-
transitions.

3 Results and discussion

Intraband γ-transition energy is the only spectro-
scopic information available about SD bands which is
universally available. SD rotational bands are recognized
by the cascade

I0 +2n→ I0 +2n−2→, · · · ,→ I0 +4→ I0 +2→ I0,

and transition energies Eγ(I0 +2n), Eγ(I0 +2n−2), · · · ,
Eγ(I0 +4) and Eγ(I0 +2) from these equally spaced lev-
els. These transition energies are least-squares fitted in
Eqs. (6), (10) and (18) with fitting parameters =0,C, a,b
and A,B,C respectively. In this approach, a compar-
ison between calculated transition energies and experi-
mental transition energies is made. It was found that
the root-mean-square (rms) deviation (χ) of calculated
values with experimental values depends upon the pre-
scribed level spins. Whenever an accurate band head
spin (I0) is assigned, the calculated transition energies
agree well with observed transition energies. But, if I0

is artificially shifted from the correct spin value even by
±1, the rms deviation increases immensely. We have

χ =

[

1

n

n
∑

n=1

(

Ecal
γ (Ii)−Eexp

γ (Ii)

Eexp
γ (Ii)

)2
]1/2

, (21)

where n is the number of transitions involved in the fit-
ting.

Eγ transition energies of the 86Zr band indexed in
the table of superdeformed bands [37] and continuously
updated ENSDF database [38] have been fitted to the
VMI model, ab formula and Harris ω2 expansion. The
values of different fitting parameters are obtained. The
values of band head spins obtained from the rotational
energy formulae are listed and a comparison with other
experimental data made in Table 1.
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Table 1. Band head spin (I0) obtained from various models/formulae of 86Zr. Here 1,2,3 and 4 in parenthesis
represent band 1, band 2, band 3, and band 4 respectively. The Eγ value marked by an asterisk (∗) represents a
tentative transition.

SD band Eγ(I0 +2→ I0)/keV VMI model ab formula Harris ω2 Ref. [26]

expansion
86Zr(1) 1518 24 19 25 23
86Zr(2) 1577 22 13 43 22
86Zr(3) 1866∗ 24 32 20 25
86Zr(4) 1648 23 14 38 23

Band head spins obtained from the ab formula de-
viate greatly from the values given experimentally [26]
for the obvious reason that this formula is valid only for
nuclei with small axial asymmetry [31, 32] (sin2 3γ � 1).
It is also worth mentioning that the ab formula is valid
for the low spin region before backbending. Spins cal-
culated from Harris ω2 expansion also have a large de-
viation, but the band head spin obtained from the VMI
model is in agreement with experimental results. Band
head spins of all four bands in 86Zr obtained from χ plots
using the VMI model are shown in Fig. 1. Since rms
deviation depends upon the number of transitions in-
volved, we have ignored highest transition (Eγ = 2708
keV) of 86Zr(2) due to its poor statistics. In addition,
the lowest (Eγ = 1866 keV) and highest (Eγ = 2429 keV)
transitions of 86Zr(3) have been ignored in the fit for
the same reason. We have chosen to ignore the ten-
tative transitions because smaller rms deviation and a
better agreement with experimental band head spin is
obtained.

An illustrative example of least-squares fitting of
86Zr(1) is given in Table 2. It is clear from the ta-
ble that at I0 = 24, rms deviation is at a minimum.
However, if I0 is assumed to be 23 or 25, rms devia-
tion increases immensely, so both of these values have
been discarded. The values of parameters =0 and C
obtained from a least-squares fit using the VMI model
are listed in Table 3 and the softness parameter (σ) is
derived from them. The experimental and calculated
transition energies along with moment of inertia (=I)
of four SD bands in 86Zr are shown in Table 4. Since
at low spins the transition energy of 86Zr(4) lies in the
midpoint of 86Zr(2), it was proposed [26] that these two
could be signature partners. Hence, the spins of 86Zr(4)
should be 1~ higher than those of 86Zr(2). Also, it was
measured [26] that the transition quadrupole moments
(Qt) of 86Zr(4) (= 3.8+0.6

−0.5 eb) are close to 86Zr(2), which
further supports that these bands are signature part-
ners. The calculated band head spin of 86Zr(4) is 1~

higher than 86Zr(2) and the band head MOI of these
two bands are very close to each other, which also sup-
ports the conjecture that these two are signature partner
bands. Fig. 1. χ plots to obtain band head spin (I0) using

the VMI model.
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Table 2. Spin determination of 86Zr(1) using the VMI model. I0 corresponds to band head spin. δ =Eexp
γ (I)−Ecal

γ (I),
where Eγ is in keV. χ is the rms deviation given by Eq. (21).

Eexp
γ (I)

I0 = 23i I0 =24ii I0 =25iii

I Ecal
γ

(I) δ I Ecal
γ

(I) δ I Ecal
γ

(I) δ

1518 25 1512.98 5.020 26 1516.09 1.905 27 1518.8 −0.8

1646 27 1649.23 −3.226 28 1650.36 −4.362 29 1651.33 −5.328

1785 29 1788.47 −3.470 30 1788.11 −3.107 31 1787.76 −2.761

1929 31 1930.94 −1.937 32 1929.58 −0.581 33 1928.37 0.626

2077 33 2076.85 0.146 34 2075.04 1.961 35 2073.44 3.561

2228 35 2226.45 1.554 36 2224.73 3.268 37 2223.23 4.767

2383 37 2379.94 3.059 38 2378.91 4.085 39 2378.03 4.971

2540 49 2537.56 2.437 40 2537.84 2.161 41 2538.1 1.899

2696 41 2699.54 −3.540 42 2701.76 −5.757 43 2703.72 −7.722

χ 0.00164488 0.00159806 0.00194048

i =0 = 0.0339 keV−1, C =1.598×108 keV3. ii =0 = 0.0357 keV−1, C = 1.169×108 keV3. iii=0 = 0.0375 keV−1, C =0.883×108 keV3.

Table 3. Parameters obtained from least-squares fit of four bands in 86Zr using the VMI model. The softness
parameter (σ) is obtained using Eq. (8).

SD experimental band head MoI stiffness constant softness parameter χ

band Eγ(I0 +2→ I0)/keV =0/keV−1 (C×108)/keV3 σ = 1/(2C(=0)3) (×10−2)

(×10−5)
86Zr(1) 1518 0.0357 1.169 9.40 0.1598
86Zr(2) 1577 0.0296 6.991 2.77 1.811
86Zr(3) 1866 0.0301 7.153 2.56 3.22
86Zr(4) 1648 0.0294 13.354 1.47 1.179

Table 4. Experimental transition energies (Eexp
γ ), calculated transition energies (Ecal

γ ) and moment of inertia (=I )
for SD bands in 86Zr. For each band of 86Zr, the first row corresponds to spin values, the second and third rows
give experimental and calculated transition energies respectively, and the fourth row gives the moment of inertia
obtained from the VMI model. Here Eγ is given in keV and =I in ~

2keV−1. Eγ values marked by asterisks (∗)
represent tentative transitions.

86Zr(1)

I 26 28 30 32 34 36 38 40 42

Eexp
γ 1518 1646 1785 1929 2077 2228 2383 2540 2696

Ecal
γ 1516.09 1650.36 1788.11 1929.58 2075.04 2224.73 2378.91 2537.84 2701.76

=I 0.0362 0.0365 0.0369 0.0373 0.0376 0.0380 0.0384 0.0388 0.0392
86Zr(2)

I 24 26 28 30 32 34 36 38 40

Eexp
γ 1577 1730 1891 2056 2227 2393 2514 2562 2708∗

Ecal
γ 1613.84 1755.87 1899.04 2043.44 2189.17 2336.32 2484.97 2365.21 2787.14

=I 0.0297 0.0298 0.02985 0.0299 0.0300 0.03014 0.03025 0.03036 0.03048
86Zr(3)

I 26 28 30 32 34 36 38

Eexp
γ 1866∗ 1959 2062 2155 2244 2343 2429∗

Ecal
γ 1721.79 1861.79 2002.9 2145.23 2288.83 2433.81 2580.23

=I 0.030229 0.030312 0.030399 0.030493 0.030591 0.030693 0.030799
86Zr(4)

I 25 27 29 31 33 35 37

Eexp
γ 1648 1811 1967 2123 2273 2403 2491

Ecal
γ 1679.89 1819.72 1960.14 2101.34 2243.22 2385.88 2529.37

=I 0.0295 0.02953 0.0296 0.02963 0.0297 0.02975 0.02981
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Parameters a,b and A,B,C of the ab formula and
Harris ω2 expansion respectively are used to calculate
the dynamic moment of inertia. The dynamic MOI from
the VMI model is calculated using Eq. (20). The vari-
ation of =(2) with ~ω is shown in Fig. 2. In the figure
experimental data is shown by squares with error bars
and calculated results are shown by triangles, stars and
circles for the VMI model, ab formula and Harris ω2 ex-
pansion respectively. The ab formula does not produce
any general trend of =(2) and shows a constant vari-
ation with rotational frequency. Gradual downsloping
behaviour of =(2) with ~ω was observed by Sarantittes
et al. [26] in 86Zr(1), which was interpreted as a loss
of collectivity and increase in triaxiality of band. This
trend of 86Zr(1) is reproduced very well with the VMI
model and Harris ω2 expansion. The general trend of
=(2) with ~ω for 86Zr(2) and 86Zr(4) is also reproduced
well with Harris ω2 expansion, although the VMI model
does not reproduce the sudden increase of =(2) at higher
frequency in 86Zr(4). The high value of =(2) in 86Zr(3) is
intriguing, since the calculations done by Sarantittes et
al. for both triaxial superderformed bands and enhanced
deformation bands do not agree with experimental data.
These high values of =(2) are reproduced well with Harris
ω2 expansion, but comparatively low values of =(2) are
obtained from the VMI model.

The rigidity of the nucleus is defined by the nuclear
softness parameter (σ) which increases as the deforma-
tion increases. The observed nuclear softness parameter
for SD bands [39] is in the range 10−4 6 σ 6 10−6 due to
their rigid rotor behaviour, whereas for ND bands [34]
the range is 10−2 6 σ 6 10−4. As expected, our result for
the softness parameter (σ ∼ 10−5) lies in the SD range.

4 Conclusion

The band head spin of four bands in 86Zr has been
proposed by the VMI model, ab formula and Harris ω2

expansion. Out of the three rotational energy formu-
lae, the band head spin obtained from the VMI model
agrees with the available experimental results. Assigned
spins for the lowest levels are 24~, 22~, 24~ and 23~ for
86Zr(1), 86Zr(2), 86Zr(3) and 86Zr(4) respectively. When-
ever accurate band head spin is assigned, the calculated
transition energies agree well with the experimental tran-
sition energies. The variation of =(2) with ~ω was also
investigated. It can be concluded that the VMI model is
a powerful approach in assigning spin not only of axially
symmetric SD bands but also of triaxial SD bands. It
was futher observed that Harris ω2 expansion is a pow-
erful tool for reproducing the experimental trend of =(2)

with ~ω.

Financial support from the Department of Science

and Technology, Government of India is gratefully ac-
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Fig. 2. Variation of calculated dynamic moment
of inertia with rotation frequency for 86Zr and
comparison with experimental data. Experimen-
tal data is taken from Ref. [36]
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