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Abstract: We study the scalar, vector and tensor two-gluon and trigluon glueball spectra in the framework of

the 5-dimension dynamical holographic QCD model, where the metric structure is deformed self-consistently by the

dilaton field. For comparison, the glueball spectra are also calculated in the hard-wall and soft-wall holographic QCD

models. In order to distinguish glueballs with even and odd parities, we introduce a positive and negative coupling

between the dilaton field and glueballs, and for higher spin glueballs, we introduce a deformed 5-dimension mass.

With this set-up, there is only one free parameter from the quadratic dilaton profile in the dynamical holographic

QCD model, which is fixed by the scalar glueball spectra. It is found that the two-gluon glueball spectra produced

in the dynamical holographic QCD model are in good agreement with lattice data. Among six trigluon glueballs, the

produced masses for 1±− and 2−− are in good agreement with lattice data, and the produced masses for 0−−, 0+−

and 2+− are around 1.5 GeV lighter than lattice results. This result might indicate that the three trigluon glueballs

of 0−−, 0+− and 2+− are dominated by the three-gluon condensate contribution.
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1 Introduction

Quantum chromodynamics (QCD) is accepted as the
fundamental theory of describing the strong interaction.
In the high energy regime, QCD has the property of
asymptotic freedom, and perturbative QCD calculations
have been tested with high precision. However, in the
low energy regime, the nonperturbative aspect related
to QCD vacuum properties and hadron spectra remains
as an outstanding challenge. The non-Abelian feature of
QCD makes it possible to form bound states of gauge
bosons, i.e. glueballs (gg, ggg, etc.) [1]. The gauge
field plays a more important dynamical role in glueballs
than that in the standard hadrons, therefore studying
particles like glueballs offers a good opportunity to un-
derstand the nonperturbative aspects of QCD.

The glueball spectrum has attracted much attention
for more than three decades [1], and it has been widely
investigated by using various non-perturbative methods.
For example, from first principles calculation by using
lattice QCD [2–6], by using flux tube model [7] as well
as by using QCD sum rules [8–10]. For more information,

please refer to review papers [11].
The discovery of gravity/gauge duality, or anti-de Sit-

ter/conformal field theory (AdS/CFT) correspondence
[12–14], offers a new possibility to tackle the difficulty
of strongly coupled gauge theories. For reviews see Ref.
[15]. In recent decades, many efforts have been invested
from both top-down and bottom-up approaches in exam-
ining nonperturbative QCD properties, e.g., QCD equa-
tion of state, phase transitions, fluid properties of quark-
gluon plasma [16], meson spectra [17–19], and baryon
spectra [20], as well as in the glueball sector [21–25]. It
is expected that the holography approach can shed some
light on our understanding of the nonperturbative as-
pects of QCD.

QCD is a non-conformal gauge theory, and the Sakai-
Sugimoto (SS) model [26] is one of the most successful
non-conformal top-down holographic QCD models. The
glueball spectra in the Sakai-Sugimoto model have been
investigated in the literature, see Ref. [27]. Glueballs
have also been widely studied by using the bottom-up
approach [23], where most studies are based on hard-wall
[17] and soft-wall holographic QCD models [18] with the
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conformal AdS5 background metric.
A successful holographic QCD model should grasp

two main features of nonperturbative QCD properties:
spontaneous chiral symmetry breaking and color charge
confinement. The dynamical holographic QCD model
(DhQCD), which can describe both chiral symmetry
breaking and confinement, has been constructed in Ref.
[28–30]. In this model, the gluon dynamics background
is determined by the coupling between the graviton and
the dilaton field Φ(z), which is responsible for the gluon
condensate and confinement, and the scalar field X(z) is
introduced to mimic chiral dynamics. Evolution of the
dilaton field and scalar field in 5D resemble the renor-
malization group from ultraviolet (UV) to infrared (IR).
This DhQCD model describes the scalar glueball spectra
and the light meson spectral quite well [28–30]. Further
studies [31, 32, 42] show that this DhQCD model can
also describe the QCD phase transition, the equation of
state of QCD matter, and temperature dependent trans-
port properties, including shear viscosity, bulk viscosity,
electric conductivity as well as the jet quenching param-
eter.

For the scalar glueball spectra, it was shown in
Ref.[29] that, comparing with the results in the hard-wall
and soft-wall holographic QCD models [23], the scalar
glueballs, including the lowest state and excited states,
can be surprisingly well described in the DhQCD model.
However, the scalar glueball 0++ has the same quan-
tum number as the scalar quarkonium q̄q and tetraquark
q̄qq̄q [34] states, and the complexity of determining the
glueball states lies in that gluonic bound states might al-
ways mix with q̄q and q̄qq̄q states. For example, one has

to distinguish the lightest scalar glueball state among
19 scalar mesons observed in the energy range below
2 GeV [35, 36]. Therefore, it is interesting to investi-

gate odd glueballs with unconventional quantum num-
bers which cannot be carried by quark-antiquark bound
states. These include JPC = 0−−,0+−,2+−,3−+ glue-

balls, which can only be made of at least three-gluon
bound states.

This motivates us to investigate the whole glueball
spectra including (scalar, vector as well as tensor glue-

balls and their excitations) in the framework of the
DhQCD model. The paper is organized as follows. In

Section 2 we give the operators of two-gluon and trigluon
glueballs. We introduce the dynamical soft-wall holo-

graphic QCD model in Section 3, and calculate the glue-

ball spectra in the dynamical holographic QCD model in
Section 4. It is found that higher-spin glueballs are very

heavy compared with lattice data, and the even and odd

parities cannot be distinguished. Therefore, we intro-

duce a deformed 5-dimension mass for higher spin glue-
balls, and in order to distinguish glueballs with even and
odd parities, we introduce the positive and negative cou-

pling between the dilaton field and glueballs. With this
set-up, we calculate the glueball spectra in the modified
dynamical holographic QCD model in Section 5 and find
that the two-gluon glueball spectra are in good agree-
ment with lattice data and the trigluon glueball spectra
agree with results from QCD sum rules. Finally, a short
summary is given in Section 6.

2 Two-gluon and trigluon glueballs

The AdS/CFT correspondence establishes a one-to-
one correspondence between a certain class of 4D local
operators in the N = 4 superconformal gauge theory
and 5D supergravity fields representing the holographic
correspondents in the AdS5×S5 bulk theory. According
to the AdS/CFT dictionary, the conformal dimension of
a (f -form) operator on the ultraviolet (UV) boundary is
related to the M 2

5 of its dual field in the bulk as follows
[12–14]:

M 2
5 = (∆−f)(∆+f −4) . (1)

In the bottom-up approach, for example in the holo-
graphic QCD models, one can expect a more general cor-
respondence, i.e. each operator O(x) in the 4D field the-
ory corresponds to a field O(x,z) in the 5D bulk theory.
To investigate the glueball spectra, we consider the low-
est dimension operators with the corresponding quantum
numbers and defined in the field theory living on the 4D
boundary. We show the two-gluon and trigluon glueball
operators and their corresponding 5D masses in Table 1.

Table 1. 5D mass square of two-gluon and trigluon
glueballs. The operators are taken from [22] and
[9, 10].

JPC 4D : O(x) ∆ f M2
5

0++ Tr(G2) 4 0 0

0−− Tr(G̃{Dµ1
Dµ2

G,G}) 8 0 32

0−+ Tr(GG̃) 4 0 0

1±− Tr(G{G,G}) 6 1 15

2++ Tr

(

GµαGαν −
1

4
δµνG2

)

4 2 4

2++ Ea
i Ea

j −Ba
i Ba

j −trace 4 2 4

2−+ Ea
i Ba

j +Ba
i Ea

j −trace 4 2 4

2±− Tr(G{G,G}) 6 2 16

For a trigluon glueball 0−−, the detailed structure of
the operator is given in Ref. [9]

jA
0−− ∼dabc[gt

αβG̃a
µν ][∂α∂βGb

νρ][G
c
ρµ], (2)

jB
0−− ∼dabc[gt

αβGa
µν ][∂α∂βG̃b

νρ][G
c
ρµ], (3)

jC
0−− ∼dabc[gt

αβGa
µν ][∂α∂βGb

νρ][G̃
c
ρµ], (4)

jD
0−− ∼dabc[gt

αβG̃a
µν ][∂α∂βG̃b

νρ][G̃
c
ρµ], (5)
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where dabc stands for the totally symmetric SUc(3) struc-
ture constant and gt

αβ = gαβ−∂α∂β/∂2.
The interpolating currents of the 2+− oddball 2+−

take the form as [10],

j2+−, A
µα (x) =g3

sd
abc[Ga

µν(x)][Gb
νρ(x)][Gc

ρα(x)] , (6)

j2+−, B
µα (x) =g3

sd
abc[Ga

µν(x)][G̃b
νρ(x)][G̃c

ρα(x)] , (7)

j2+−, C
µα (x) =g3

sd
abc[G̃a

µν(x)][Gb
νρ(x)][G̃c

ρα(x)] , (8)

j2+−, D
µα (x) =g3

sd
abc[G̃a

µν(x)][G̃b
νρ(x)][Gc

ρα(x)] . (9)

3 The dynamical soft-wall holographic

QCD model and gluodynamics

The dynamical soft-wall holographic QCD model is
described in Ref. [29]. The pure gluon part of QCD can
be modelled by the 5D graviton-dilaton coupled action:

SG =
1

16πG5

∫

d5x
√

gse
−2Φ

(

Rs +4∂MΦ∂MΦ−V s
G(Φ)

)

, (10)

where G5 is the 5D Newton constant, gs, Φ and V s
G are

the 5D metric, the dilaton field and dilaton potential in
the string frame, respectively. The metric is chosen to
be

gs
MN = b2

s(z)(dz2 +ηµνdxµdxν), bs(z)≡ eAs(z). (11)

Under the conformal transformation

gE
MN = gs

MNe−4Φ/3, V E
G = e4Φ/3V s

G, (12)

Eq.(10) can be rewritten in the Einstein frame

SE
G =

1

16πG5

∫

d5x
√

gE

(

RE − 4

3
∂MΦ∂MΦ−V E

G (Φ)

)

. (13)

The Einstein equations are

EMN +
1

2
gE

MN

(

4

3
∂LΦ∂LΦ+V E

G (Φ)

)

−4

3
∂MΦ∂NΦ = 0, (14)

8

3
√

gE

∂M (
√

gE∂MΦ)−∂ΦV E
G (Φ) = 0. (15)

Substituting the metric of Eq.(11) into the above equa-
tions, we can obtain:

−A
′′

E +A
′2
E − 4

9
Φ

′2 = 0, (16)

Φ
′′

+3A
′

EΦ
′ − 3

8
e2AE∂ΦV E

G (Φ) = 0, (17)

where

bE(z) = bs(z)e−
2
3

Φ(z) = eAE(z), AE(z) = As(z)− 2

3
Φ(z).

(18)
In the string frame, the above two equations of motion
are

−A
′′

s −
4

3
Φ

′

A
′

s +A
′2
s +

2

3
Φ

′′

= 0, (19)

Φ
′′

+(3A
′

s−2Φ
′

)Φ
′ − 3

8
e2As−

4
3

Φ∂Φ(e
4
3

ΦV s
G(Φ)) = 0. (20)

We take the same dilaton field as that in the KKSS
model or soft-wall holographic QCD model [18], i.e.,

Φ = µ2
Gz2. (21)

It is simple to solve the metric AE and the dilaton po-
tential V E

G (Φ) in the quadratic dilaton background

AE(z)= log

(

L

z

)

− log

(

0F1

(

5/4,
Φ2

9

))

, (22)

V E
G (Φ)=−

120F1

(

1/4,
Φ2

9

)2

L2
+

160F1

(

5/4,
Φ2

9

)2

Φ2

3L2
, (23)

with 0F1(a;z) the hypergeometric function.

4 Glueball spectra in the dynamical soft-

wall holographic QCD model

4.1 Scalar glueballs

The 5D action for the scalar glueball G (x,z) in the
string frame takes the same form as that in the original
soft-wall model [24, 25]

SG =−
∫

d5x
√

gs

1

2
e−Φ

[

∂MG ∂M
G +M 2

G ,5G
2
]

. (24)

The metric structure in the dynamical soft-wall model is
solved from Eq. (17) instead of AdS5.

The equation of motion for the scalar glueballs G is
given below as

−e−(3As−Φ)∂z(e
3As−Φ∂zGn)+e2AsM 2

G ,5Gn = m2
G ,nGn. (25)

Via the substitution Gn → e−
1
2
(3As−Φ)Gn, the equation

can be brought into the Schroedinger-like equation

−G
′′

n +VG Gn = m2
G ,nGn, (26)

with the 5D effective Schroedinger potential

VG =
3A

′′

s −Φ
′′

2
+

(3A
′

s−Φ
′

)2

4
+e2AsM 2

G ,5. (27)
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4.2 Vector glueballs

For vector glueballs V , the 5D action is

SV =−
∫

d5x
√

ge−Φ

(

1

4
F MNFMN +

1

2
M 2

V ,5V
2

)

, (28)

where FMN = ∂MVN −∂NVM .
The equation of motion for vector glueballs V is

−e−(As−Φ)∂z(e
As−Φ∂zVn)+e2AsM 2

V ,5Vn = m2
V ,nVn. (29)

Via the substitution Vn → e−
1
2
(As−Φ)Vn, the equation can

be brought into the Schroedinger-like equation

−V
′′

n +VV Vn = m2
V ,nVn, (30)

with the 5D effective Schroedinger potential

VV =
A

′′

s −Φ
′′

2
+

(A
′

s−Φ
′

)2

4
+e2AsM 2

V ,5. (31)

4.3 Tensor glueballs

For tensor glueballs, the 5D action is

ST =−1

2

∫

d5x
√

ge−Φ(∇LhMN∇LhMN

−2∇LhLM∇NhNM +2∇MhMN∇Nh

−∇Mh∇Mh+M 2
h,5(h

MNhMN −h2)), (32)

where h = gMNhMN . With the constraint

∇MhMN = 0, h = 0, hµν = e2AsHµν , hMz = 0, (33)

The equation of motion for tensor glueballs Hµν is

−e−(3As−Φ)∂z(e
3As−Φ∂zHn)

+e2AsM 2
H ,5Hn = m2

H ,nHn. (34)

Via the substitution Hn → e−
1
2
(3As−Φ)Hn, the equation

can be brought into the Schroedinger-like equation

−H
′′

n +VH Hn = m2
H ,nHn, (35)

with the 5D effective Schroedinger potential

VH =
3A

′′

s −Φ
′′

2
+

(3A
′

s−Φ
′

)2

4
+e2AsM 2

H ,5. (36)

4.4 Numerical results

For numerical calculations, we have to fix parame-
ters in the model. In the dynamical holographic model,
there is only one free parameter, i.e., µG. We fix this
parameter by fitting the scalar glueball spectra from lat-
tice results [2–5] as shown in Table 2. The lattice data
in Table 2 indicates the slope of the Regge spectra is
around 4 GeV2, which is equivalent to µG ' 1 GeV in
the dynamical holographic QCD model.

Table 2. Lattice data for 0++ glueball in unit of MeV. Lat1 data from Ref. [4], Lat2 and Lat3 data from Ref. [3],
Lat4 [2] and Lat5 [5] are anisotropic results.

n(0++) Lat1 Lat2 Lat3 Lat4 Lat5

Nc = 3 Nc =3 Nc →∞ Nc = 3 Nc =3

1 1475(30)(65) 1580(11) 1480(07) 1730(50)(80) 1710(50)(80)

2 2755(70)(120) 2750(35) 2830(22) 2670(180)(130)

3 3370(100)(150)

4 3990(210)(180)

We will also compare our results in the dynamical
holographic QCD model with those in the hard-wall and
soft-wall holographic QCD models. In the hard-wall
holographic QCD model, the equation of motion for glue-
ball G is:

−e−cAs∂z(e
cAs∂zGn)+e2AsM 2

G ,5Gn = m2
G ,nGn, (37)

where c = 1 for vector glueballs and c = 3 for scalar
and tensor glueballs. With the UV boundary condition
Gn(ε) = 0, the solution is:

Gn(z) = z
1+c

2 Jn(mG ,n,z), (38)

where n =
√

1+2c+c2 +4M 2
G ,5/2 and J is a Bessel func-

tion. The IR boundary condition ∂zGn(zm) = 0 gives

the discrete spectrum of the glueballs. Here zm is the
hard cut-off, which is the only parameter in the hard-wall
model, and can be fixed by the ground state of the scalar
glueball 0++. When we take the mass for the lowest
scalar glueball as 1730 MeV, which fixes zm = 452 MeV
in the hard wall model.

In the soft-wall model, where the dilaton background
takes the quadratic form Φ = µ2

Gz2 and the metric struc-
ture is still AdS5, the Regge spectra for glueballs can be
derived as [24, 25]

m2
n = µ2

G

{

4n+c+1+
√

(c+1)2 +4M 2
5

}

, n = 0,1,2, · · ·
(39)

where c = 3 in the case of scalars and tensors and c = 1
in the case of vectors. There is also only one parameter
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µG in the soft-wall model. The Regge slope of the 0++

glueball gives µG = 1 GeV (SW†), and the lowest scalar
glueball mass 1730 MeV gives µG = 0.5 GeV (SW‡).

Table 3 shows the scalar glueball spectra in the dy-
namical soft-wall holographic QCD model, and the re-
sults are compared with combined lattice data [2–5] as
well as hard-wall and soft-wall models. It is found that
the hard-wall model cannot produce Regge spectra, and
the soft-wall model cannot simultaneously produce the
correct Regge slope and the ground state of the scalar
glueball. As was shown in Ref. [29], the Regge slope and
the ground state of the scalar glueball can be correctly
produced in the dynamical soft-wall holographic QCD
model with only one parameter.

Table 3. The mass spectra of 0++ glueballs in
the dynamical soft-wall model, compared with
combined lattice data [2–5], and hard-wall model
(zm = 452 MeV), soft-wall model with SW† indi-
cates µG is fixed by lowest mass of 0++ glueball,
and SW‡ indicates µG is fixed by Regge slope of
0++ glueball. The unit is in MeV.

JPC Lattice HW SW† SW‡ DSW

0++ 1475-1730 1730 1730 2828 1593

0∗++ 2670-2830 3168 2119 3464 2618

0∗∗++ 3370 4593 2447 4000 3311

0∗∗∗++ 3990 6016 2735 4472 3877

With the parameter fixed by the scalar glueball, we
calculate the vector and tensor glueball masses in the
dynamical soft-wall model and compare with lattice data
as well as results from hard-wall and soft-wall models.
The results are shown in Table 4. It is observed that for
vector and tensor glueballs, the results from the dynam-
ical holographic QCD model are far away from lattice

Table 4. The mass spectra of vector and tensor
glueballs in the dynamical soft-wall model, com-
pared with lattice data, and hard-wall model
(zm = 452 MeV), soft-wall model with SW† indi-
cates µG is fixed by lowest mass of 0++ glueball,
and SW‡ indicates µG is fixed by Regge slope of
0++ glueball. The unit is in MeV.

JPC Lattice HW1 SW† SW‡ DSW

0−+ 2590 1730 1730 2828 1593

0∗−+ 3640 3168 2119 3464 2618

0−− 5166 3658 2447 4000 10759

1+− 2940 2571 1934 3162 7535

1−− 3850 2571 1934 3162 7535

2++ 2400 2134 1901 3108 4328

2−+ 3100 2134 1901 3108 4328

2∗−+ 3890 3646 2260 3696 5233

2+− 4140 2927 2201 3598 7830

2−− 3930 2927 2201 3598 7830

data. Especially, the masses for higher spin states are
too heavy compared with lattice data. The glueball
masses from the hard-wall model are in general lighter
than the lattice results. Among the three models, the
soft-wall model (SW‡) with the parameter fixed by the
Regge slope can produce reasonably good results com-
pared with lattice data. However, none of the models
can distinguish even and odd parity states for glueballs
with the same spin.

In the next section, we will improve the dynamical
soft-wall holographic QCD model in order to produce
reasonable glueball spectra.

5 Glueball spectra in modified dynami-

cal soft-wall holographic QCD model

We observed from the last section that the masses for
higher spin glueballs are too heavy compared with lattice
data, while these states are reasonable in the soft-wall
model. This indicates that only scalar glueballs are sen-
sitive to the deformed metric, and other glueballs are not
excited from this deformed metric background. There-
fore we introduce a deformed 5D mass squared for glue-
balls. In order to distinguish even and odd parity, we
introduce a positive and negative coupling between the
dilaton field and glueballs, respectively. With this set-
up, now the 5D action for the scalar, vector and tensor
glueballs G (x,z) take the following form:

SG =−1

2

∫

d5x
√

gse
−pΦ(∂MG ∂M

G +M 2
G ,5(z)G 2) (40)

SV =−1

2

∫

d5x
√

gse
−pΦ

(

1

2
F MNFMN+M 2

V ,5(z)V 2

)

, (41)

ST =−1

2

∫

d5x
√

gse
−pΦ(∇LhMN∇LhMN

−2∇LhLM∇NhNM +2∇MhMN∇Nh

−∇Mh∇Mh+M 2
h,5(z)(hMNhMN −h2)), (42)

where M 2
5 (z) = M 2

5 e−2Φ/3, p = 1 for even parity and
p =−1 for odd parity.

The equation of motion for any glueball A can be
brought into the Schroedinger-like equation

−A
′′

n +VA An = m2
A ,nAn, (43)

with the 5D effective Schroedinger potential

VA =
cA

′′

s −pΦ
′′

2
+

(cA
′

s−pΦ
′

)2

4
+e2As−

2
3

ΦM 2
A ,5, (44)

where c = 1 for the 1-form and c = 3 for the 0-form and
2-form, and M 2

A ,5 is the value given in Table 1.
In order to distinguish glueballs with the same value

of M 2
5 but different parity, such as the 0++ and 0−+

glueballs, we have introduced the positive and negative
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coupling between the dilaton field and glueballs, respec-
tively. The negative dilaton [37, 38] and positive dila-
ton [18] have been further discussed in detail in [39–43].
From Eq.(46), we can see that in the dynamical soft-
wall model, the positive and negative coupling between
the dilaton field and glueballs only induces an effective
potential difference:

∆VA = Φ
′′

+cΦ
′

A
′

s. (45)

It was pointed in Ref. [41] that a negative dilaton cou-
pling is equivalent to adding an effective potential

∆LA = e−2As(Φ
′′

+cΦ
′

A
′

s) (46)

in the Lagrangian of positive dilaton coupling in Eq.
(42). Therefore, the spectra of different parity glueballs
are split, and the Regge slopes depending on µ are equal.

Comparing the 5D effective Schroedinger poten-
tial Eq. (46) with Eqs. (27), (31) and (36), we
can see the effect of the deformed 5D mass square
M 2

5 (z) = M 2
5 e−2Φ/3 is to counteract the deform met-

ric background. In Fig. 1 and Fig. 2, we show the
5D effective Schroedinger potential Eq. (46) as a func-
tion of z and compare with results from the soft-wall
model and the original dynamical soft-wall model. It is
found that at infrared (IR) scale, except for the scalar
glueball 0++, the 5D effective Schroedinger potential for

Fig. 1. (color online) The effective Schroedinger potential V of scalar and vector glueballs in the soft-wall model
(green thick line), dynamical soft-wall model (orange dashed line) and dynamical soft-wall model with modified
M2

5 (blue line).
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Fig. 2. (color online) The effective Schroedinger potential V of tensor glueballs in the soft-wall model (green thick
line), dynamical soft-wall model (orange dashed line) and dynamical soft-wall model with modified M 2

5 (blue line).

other glueballs in the modified dynamical soft-wall holo-
graphic QCD model coincides with those from the soft-
wall model. The parity difference p = ± only changes
the 5D effective Schroedinger potential in the range
0.5 < z < 2.

The final results of the glueball spectra in the mod-
ified dynamical holographic QCD model are shown in
Fig. 3 and in Table 5 with details. It is found that
with only one parameter µG = 1GeV, which is fixed by
the Regge slope of the scalar glueball spectra, one can
produce almost all glueball spectra in good agreement
with lattice data, except for three trigluon glueball states
0−−, 0+− and 2+−, whose masses are 1.5 GeV lighter
than lattice results. Considering that we only take the
simplest quadratic dilaton profile, which corresponds to
dimension-2 gluon condensate (or effectively two-gluon
condensate) in the vacuum, our results might indicate
that these three trigluon glueballs 0−−, 0+− and 2+− are
dominated by the three-gluon condensate contribution.
It is worth mentioning that by introducing the positive
and negative coupling between the dilaton field and glue-
balls, we can distinguish glueballs with the same value of

M 2
5 but different parity, such as the 0++ and 0−+ glue-

balls. Surprisingly, from Table 5, we can see that without
introducing any extra parameter, the mass differences for
0++ and 0−+ and their excitations as well as for other
parity partners are in good agreement with lattice re-
sults. This indicates that it is practical to relate the
positive and negative coupling between the dilaton field
and glueballs to the parity of hadron spectra.

6 Conclusion and discussion

In this work, we have studied scalar, vector and
tensor glueball spectra in the framework of a 5-
dimension dynamical holographic QCD model, where
the metric structure is deformed self-consistently by
the dilaton field. It is found that only scalar glue-
balls are excited from this deformed metric back-
ground, and other glueballs excited from this de-
formed metric background are much heavier than lat-
tice data. Therefore, for higher spin glueballs, we
introduce a deformed 5-dimension mass in order to

123101-7
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Fig. 3. (color online) The mass spectra of glueballs in the modified dynamical soft-wall model with µ = 1 GeV (line)
compared with the lattice result [2–6] (rectangle).

Table 5. The mass of glueball spectra in Lattice
QCD [2–6], Flux tube model [7], QCDSR [9,
10, 35, 44–46] and modified dynamical soft-wall
model. Note that 0++§ is trigluonium. The unit
is in GeV.

JPC LQCD flux tube model QCDSR MDSM

0++ 1.475–1.73 1.52 1.5 1.593

0∗++ 2.67–2.83 2.75 – 2.618

0∗∗++ 3.37 – – 3.311

0∗∗∗++ 3.99 – – 3.877

0−+ 2.59 2.79 2.05 2.606

0∗−+ 3.64 – – 3.317

0−− 5.166 2.79 3.81 3.817

0+− 4.74 2.79 4.57 3.04

0++§ – – 3.1 2.667

1+− 2.94 2.25 – 2.954

1−− 3.85 – – 3.44

2++ 2.4 2.84 2 2.203

2−+ 3.1 2.84 – 3.161

2∗−+ 3.89 – – 3.703

2+− 4.14 2.84 6.06 2.786

2−− 3.93 2.84 – 3.619

counteract the effect of the deformed metric background.
In order to distinguish glueballs with even and odd par-
ities, we introduce the positive and negative coupling
between the dilaton field and glueballs.

With these set-ups, we calculated the glueball spec-
tra with only one free parameter in the dynamical holo-
graphic QCD model, which is fixed by the scalar glue-
ball spectra. It is found that all two-gluon glueball
spectra produced in the dynamical holographic QCD
model are in good agreement with lattice data. We in-
vestigated six trigluon glueballs. Among these trigluon
glueballs, the produced masses for 1±− and 2−− are
in good agreement with lattice data, and the produced
masses for 0−−, 0+− and 2+− are around 1.5 GeV lighter
than lattice results. Considering that we only take the
simplest quadratic dilaton profile, which corresponds to
dimension-2 gluon condensate (or effectively two-gluon
condensate) in the vacuum, our results might indicate
that the three trigluon glueballs 0−−, 0+− and 2+− are
dominated by three-gluon condensate contribution. Fur-
ther studies with a more complicated dilaton profile are
needed.
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