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Electromagnetic transitions in multiple chiral doublet bands *
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Abstract: Multiple chiral doublet bands (MχD) in the 80, 130 and 190 mass regions are studied by the model of

γ=90◦ triaxial rotor coupled with identical symmetric proton-neutron configurations. By selecting a suitable basis,

the calculated wave functions are explicitly exhibited to be symmetric under the operator Â, which is defined as

rotation by 90◦ about the 3-axis with the exchange of valance proton and neutron. We found that both M1 and E2

transitions are allowed between levels with different values of A, while they are forbidden between levels with same

values of A. Such a selection rule holds true for MχD in different mass regions.
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1 Introduction

Chirality in nuclei was originally predicted by Frauen-
dorf and Meng [1] in 1997 for triaxially deformed nuclei,
which exhibited as a pair of nearly degenerate ∆I = 1
bands with the same parity, namely chiral doublet bands.
Chiral doublet bands were first observed in 2001 in the
N=75 isotones [2]. Later, both theoretical and experi-
mental effort has been devoted to search for more chi-
ral nuclei. So far, more than 30 candidate chiral nu-
clei have been reported experimentally in the 80, 100,
130 and 190 mass regions [3–24]. Theoretically, nuclear
chirality has been investigated in the frameworks of the
titled axis cranking approach [1, 25–27], particle rotor
model (PRM) [1, 28–38], interacting boson approxima-
tion (IBA) [16, 39] and project shell model [40].

In 2006, based on adiabatic and configuration fixed
constrained triaxial covariant density functional theory,
Meng et al. [41] predicted that multiple chiral doublet
bands (MχD) with different deformations and different
intrinsic configurations could exist in one single nucleus.
The first experimental evidence for MχD was obtained
in 133Ce [42] with the configurations πg−1

7/2h
1
11/2 ⊗νh−1

11/2

and πh2
11/2 ⊗ νh−1

11/2, then MχD with different configu-
rations were suggested in 107Ag [43] and 78Br [24]. In
addition, a novel type of MχD with identical intrinsic
configurations was also theoretically discussed in the 130
mass region with the configuration πh11/2 ⊗νh−1

11/2 [44–
47] and in the 100 mass region with the configuration
πg−1

9/2 ⊗ νh11/2 [46]. Recently, this new type of MχD

was experimentally reported in 103Rh [48], which was

analyzed by using the tilted axis cranking covariant den-

sity functional theory [49–54] along with PRM. Such new

type of MχD have not been discussed in the 80 and 190

mass regions so far.

Besides the degeneracy of excitation energies, the
properties of the electromagnetic transitions are consid-
ered as another criterion for confirming chiral doublet

bands. In 2004, Koike et al [55] introduced the selec-
tion rule for electromagnetic transition probabilities. In
an ideal case of a γ = 90◦ rotor coupled to a symmetric

particle-hole configuration, a new operator Â, which is

defined as rotation by 90◦ about the 3-axis with the ex-
change of valance proton and neutron, was used to rep-
resent the chiral operator. The selection rule in terms
of the quantum number A was examined by numeri-
cal calculations for the lowest chiral doublet bands with
the configuration πh11/2 ⊗ νh−1

11/2 in the 130 mass re-

gion [55]. Then the selection rule was used to analyse
the excited chiral doublet bands in the 130 mass re-
gion [46]. It is easy to imagine that the selection rule

for electromagnetic transitions should be directly con-
nected to the symmetry of the wave functions. However,
explicit expressions for the wave function with symmetry

under Â have not yet been shown for the chiral doublet
bands.

These facts motivate us to make more detailed theo-
retical studies for the electromagnetic transitions of MχD

in the different mass regions. In this paper, by adopt-
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ing the particle rotor model, we systematically study the
symmetry of wave functions and the selection rule for
MχD with γ=90◦ rotor coupled with the identical in-
trinsic configuration, i.e., πg9/2 ⊗νg−1

9/2, πh11/2 ⊗νh−1
11/2

and πi13/2⊗νi−1
13/2 for the 80, 130 and 190 mass regions,

respectively.

2 Formalism

The total Hamiltonian of particle rotor model of odd-
odd nuclei can be written as [1, 55, 56]

Ĥ = Ĥcore +Ĥp +Ĥn. (1)

The Hamiltonian of the core is

Ĥcore =

3
∑

k=1

R̂2
k

2Jk

, (2)

where the indices k = 1, 2, 3 represent three principal
axes of the body-fixed frame, R̂k represents the angu-
lar momentum operators for core, and Jk represents the
moment of inertia for irrotational flow, i.e.,

Jk =J0 sin2(γ−2πk/3) k = 1,2,3. (3)

For γ=90◦, J1 = 1
4
J0,J2 = 1

4
J0,J3 = J0. Thus, the

Hamiltonian of the core can be written as

Ĥcore =
1

2J0

[

4(R̂2
1 +R̂2

2)+R̂2
3

]

. (4)

The intrinsic Hamiltonians Ĥp and Ĥn describe the va-
lence proton and neutron outside the rotor. For a single-j
model, when pairing correlations are neglected, Ĥp and

Ĥn can be given as

Ĥp(n) =±1

2
C0

[

(ĵ2
3 −

j(j +1)

3
)cosγ

+
1

2
√

3
(ĵ2

+ + ĵ2
−)sinγ

]

, (5)

where C0 take values of
38.8(N +3/2)

j(j +1)
A−1/3β [29, 33].

For γ = 90◦, it can be written as

Ĥp(n) =± 1

2
√

3
C0(ĵ

2
1 − ĵ2

2 ). (6)

The total wave functions of the PRM Hamiltonian can
be expanded in the strong coupling basis. Usually, the
strong coupling basis is expressed by [29, 35, 46, 57]

|IMKϕpϕn〉=

√

1

2

[

|IMK〉|ϕpϕn〉

+(−1)I−K |IM −K〉|ϕ̄pϕ̄n〉
]

, (7)

where |IMK〉 denotes the Wigner D functions, ϕp,ϕn

and the time reversed states ϕ̄p, ϕ̄n are the single-particle
(or quasi-particle) eigenstates of the intrinsic Hamilto-
nian.

In the present paper, we adopt the basis as [28]

|IMKkpkn〉=

√

1

2

[

|IMK〉|kpkn〉

+(−1)I−jp−jn |IM−K〉|−kp−kn〉
]

, (8)

where |kp〉 (|kn〉) denotes the spherical harmonic oscilla-
tor state |nljk〉. For such a basis of Eq. (8), we can get
the certain value of the third component of core angular
momentum (R3 = K−kp−kn), which is necessary in the
analysis for the operator of rotation by 90◦ about the
3-axis. Meantime, the operator of the exchange valence
proton and neutron can be dealt with by the exchange
of the value of kp and kn of Eq. (8). Thus it is easy to

examine the symmetry under operator Â for PRM wave
functions by selecting this basis.

The probabilities of electromagnetic transition
B(M1) and B(E2) can be obtained from the PRM wave
functions with M1 and E2 operators [28, 29, 55]. For the
E2 transitions, the corresponding operator is taken as

Ê2 =

√

5

16π

[

D2∗
µ0Q̂

′
20 +(D2∗

µ2 +D2∗
µ−2)Q̂

′
22

]

, (9)

where Q̂′
20 and Q̂′

22 are the intrinsic quadrupole moments.
For the M1 transitions, the corresponding operator is
taken as

(M̂1)µ =

√

3

4π

e~

2mc

[

(gp−gR)ĵpµ +(gn−gR)ĵnµ

]

(10)

with

ĵµ =

(

ĵ0 = ĵ3, ĵ±1 =
∓(ĵ1± iĵ

2
)√

2

)

. (11)

In our calculations, the configurations πg9/2⊗νg−1
9/2,

πh11/2 ⊗ νh−1
11/2, πi13/2 ⊗ νi−1

13/2 for A ∼ 80, 130, 190
mass regions with deformation parameters β = 0.22,
γ = 90◦ and moment of inertia J0 = 30 MeV−1

~
2

are adopted. The empirical intrinsic quadrupole mo-
ment Q0 = (3/

√
5π)R2

0Zβ are adopted in the calcula-
tion of electromagnetic transitions. Using gR = Z/A
and the empirical formula gp(n) = gl + (gs − gl)/(2l +
1) with gs = 0.6gfree

s , the g-factor for proton (neu-
tron) occupied orbits g9/2,h11/2, i13/2 would be gp(gn)−
gR ≈ 0.82(−0.70),0.77(−0.65),0.76(−0.60), respectively.
Here, we take the approximate values gp(gn) − gR =
0.7(−0.7) for all the occupying orbits with the inten-
tion of deducing the strictly forbidden M1 transitions in
Eq. (10).
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3 Results and discussion

The calculated level scheme for two pairs of chiral
doublet bands based on the configurations πh11/2⊗νh−1

11/2,

πg9/2⊗νg−1
9/2 and πi13/2⊗νi−1

13/2 coupled with γ =90◦ ro-
tor are shown in Figs. 1, 2 and 3. The parity quantum
numbers, the angular momentum quantum numbers and
excited energies are listed above the energy levels. Red

arrows represent M1(I → I−1) transitions and black ar-
rows represent E2(I → I−2) transitions. The bands are
organized based on in-band B(E2;I → I−2) values over
the degenerate spin range, namely I > 10,12,14~ for 80,
130, 190 mass regions, respectively. These bands are la-
beled as 1, 2, 3, 4. Bands 1 & 2 form the lowest chiral
doublet bands A, while bands 3 & 4 form the excited
chiral doublet bands B.

Fig. 1. (color online) Calculated level scheme for two pairs of chiral doublet bands based on the configuration
πh11/2 ⊗νh−1

11/2 coupled with γ = 90◦ rotor. Black and blue solid lines represent the energy levels with A = 1 and
−1. The parity quantum numbers, the angular momentum quantum numbers and excited energies are listed above
the levels. Red arrows represent M1(I → I−1) transitions and black arrows represent E2(I → I−2) transitions.

Fig. 2. (color online) Same as Fig. 1 but for the configuration πg9/2⊗νg−1
9/2.
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Fig. 3. (color online) Same as Fig. 1 but for the configuration πi13/2⊗νi−1
13/2.

Taking the 130 mass region as an example, the
properties of electromagnetic transitions in MχD are
discussed. The corresponding B(M1;I → I − 1) and
B(E2;I → I−2) values are presented in Tables 1 and 2.
As shown in Fig. 1, the bands are organized based on
B(E2) values so that the in-band E2 transitions are al-
ways allowed. The interband E2 transitions are allowed
from the states of band 3 decaying to those of band 2,
or band 4 to 1. For the in-band M1 transitions, the
same odd-even spin staggering is clearly seen in the four
bands, in which transitions from odd spin to even spin
states are allowed. For the interband M1 transitions,
transitions from band 1 to 2 and band 2 to 1 are allowed
for even spin states decaying to odd spin states, with the
same behavior exhibited for band 3 and 4. Interband M1
transitions between chiral bands A and chiral bands B
are allowed from the states of band 3 decaying alterna-
tively to those of band 1 or 2, with the same behavior
exhibited for band 4.

The above selection rules of electromagnetic transi-
tions associated with odd and even spin are summarized
in Table 3. For the 80 and 190 mass regions, the similar
proprieties, especially the same selection rule associated
with odd and even spin as the case of the 130 mass re-
gion, are obtained from the model calculations.

Besides the selection rule for MχD, the quantitative
relations of electromagnetic transitions probabilities are
also obtained from the Tables 1 and 2. The B(M1) and
B(E2) values in the excited chiral doublet bands have
the same order of magnitude as those in lowest chiral
doublet bands. However, the B(M1) and B(E2) values
which link the excited to the lowest chiral doublet bands
are two orders of magnitude smaller than those in the
lowest (or excited) chiral doublet bands. The selection
rules and the quantitative relations of electromagnetic
transitions probabilities would be helpful for confirming
the existence of MχD in the real nuclei.

Table 1. Calculated B(M1;I → I −1)(µ2
N ) values for two pairs of chiral doublet bands based on the configuration

πh11/2⊗νh−1
11/2

coupled with γ = 90◦ rotor.

I(~)

10 11 12 13 14 15 16 17 18 19 20 21

1→1 3.1 2.9 0 2.7 0 2.4 0 2.4 0 2.2 0 2.1

1→2 0 0 2.9 0 2.3 0 2.5 0 2.5 0 2.4 0

2→1 0 0 2.7 0 2.6 0 2.3 0 2.2 0 1.9 0

2→2 3.3 3.1 0 2.5 0 2.5 0 2.4 0 2.3 0 2.0

3→1 0.002 0.01 0.03 0 0.04 0 0.05 0 0.03 0 0.03 0

3→2 0 0 0 0.10 0 0.06 0 0.05 0 0.05 0 0.09

3→3 3.3 3.1 2.9 2.6 0 2.3 0 1.7 0 1.9 0 1.2

3→4 0 0 0 0 2.5 0 1.9 0 1.5 0 1.3 0

4→1 0 0 0 0.02 0 0.09 0 0.02 0 0.0002 0 0.003

4→2 0.001 0.01 0.01 0 0.16 0 0.05 0 0.04 0 0.02 0

4→3 0 0 0 0 2.2 0 2.1 0 1.9 0 1.6 0

4→4 3.3 3.1 3.0 2.7 0 2.0 0 2.0 0 0.02 0 0.09
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Table 2. Calculated B(E2;I → I−2)(e2b2) values for two pairs of chiral doublet bands based on the configuration
πh11/2⊗νh−1

11/2 coupled with γ = 90◦ rotor.

I(~)

11 12 13 14 15 16 17 18 19 20 21

1→1 0 0.12 0.12 0.18 0.23 0.25 0.30 0.35 0.37 0.40 0.42

1→2 0.04 0 0 0 0 0 0 0 0 0 0

2→1 0.12 0 0 0 0 0 0 0 0 0 0

2→2 0 0.06 0.11 0.14 0.19 0.27 0.31 0.33 0.37 0.39 0.42

3→1 0 0 0 0 0 0 0 0 0 0 0

3→2 0.17 0.15 0.10 0.001 0.001 0.004 0.001 0.001 0.0002 0.004 0

3→3 0 0 0 0.16 0.13 0.16 0.22 0.20 0.25 0.10 0.25

3→4 0.03 0.04 0.05 0 0 0 0 0 0 0 0

4→1 0.0002 0.001 0.001 0.05 0.01 0 0 0.0003 0.01 0.0003 0.01

4→2 0 0 0 0 0 0 0 0 0 0 0

4→3 0.23 0.21 0.18 0 0 0 0 0 0 0 0

4→4 0 0 0 0.07 0.10 0.12 0.14 0.24 0.01 0.32 0.41

Table 3. Selection rule of M1 and E2 transitions
associated with odd-even initial spins.

M1(I → I−1) E2(I → I−2)

I odd spin even spin odd spin even spin

in-band

allowed forbidden allowed allowedband 3→ 2

band 4→ 1

band 1↔ 2

forbidden allowed forbidden forbidden
band 3↔ 4

band 3→ 1

band 4→ 2

As discussed in Ref. [55] for the ideal case with one-
particle one-hole plus a γ = 90◦ rotor, the chiral operator
χ = T̂ R̂2(π) can be replaced by the operator Â, defined
as

Â = ei π

2
R̂3 · Ĉ, (12)

where the operator ei π

2
R̂3 denotes core rotation by 90◦

about the 3-axis and the operator Ĉ denotes the ex-
change of the valence proton and neutron. It is obvious
that the PRM Hamiltonian described by Eqs. (4) and (6)
is symmetric under the operator Â. Then according to
Quantum Mechanics [58], the wave function might have
such a symmetry, or bring spontaneous symmetry break-
ing. Thus, it is necessary to examine the symmetry of
the wave function as the first step.

Taking the state of I = 17~ of band 1 for the 130
mass region as an example, the corresponding calcu-
lated wave functions of the PRM are listed in Table 4.
|kp,kn,K〉 denotes the basis in Eq. (8). kp,kn,K and
R3(R3 = K − kp − kn) refer to the third component of
angular momentum for the valence proton, valance neu-
tron, nucleus and core, respectively. CIK

kp,kn
refers to the

expansion coefficient of the basis. The quantum number
R3 takes only even integer values due to D2 symmetry.

C takes 1 and −1 due to the symmetry and antisymme-
try of the intrinsic proton-neutron wave function under
the exchange of proton and neutron, respectively. The
A values can be fixed by (n = 0,1,2,3..)

1. R3 =±4n, C = 1, or R3 =±4n+2, C =−1, result-
ing in A = 1,

2. R3 =±4n, C =−1, or R3 =±4n+2, C = 1, result-
ing in A =−1.

The components of the wave function are divided into
two groups: one with C = 1, such as (0.111|2.5,3.5,16〉+
0.111|3.5,2.5,16〉), and the other with C = −1, such as
(−0.107| − 0.5,1.5,13〉+ 0.107|1.5,−0.5,13〉). Together
with the values of corresponding R3 in the different com-
ponents of the wave function, A = −1 can be obtained
for I = 17~ of Band 1. The wave function is expanded in
a 1260 (∼ (2jp +1)(2jn +1)(2I +1)/4) dimensional basis
for such a state, in which all components meet the sym-
metry with A =−1. The calculated PRM wave functions
of MχD in the three mass regions are systematically ex-
amined, and are found to always have eigenvalues A = 1
or −1.

Therefore, levels with A = 1 and −1 are expressed
by black and blue solid lines in Figs. 1, 2, 3. We find
that M1 and E2 transitions are allowed between levels
with different values of A, but forbidden between levels
with the same values of A. Such a selection rule was
examined for the lowest chiral doublet bands in the 130
mass region [55]. The present results show that the selec-
tion rule is not only suitable for the lowest chiral doublet
bands but is also suitable for the excited chiral doublet
bands, not only in the 130 mass region but also in the
80 and 190 mass regions with symmetric proton-neutron
configurations.

The quantum number A and the resulting selection
rule are attributed to the symmetry under operator Â
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for the Hamiltonian with the present ideal case. For the
Hamiltonian with the asymmetric configuration or γ de-
viating from 90◦, it is obvious that A is no longer a good
quantum number and the resulting selection rule can-
not be obtained. However, by analyzing the previous re-
sults [47, 56] and our systematic calculations, it is found
that the selection rule associated with odd-even spin still
holds for the lowest chiral doublet bands when γ is close
to 90◦, while is difficult to be kept for the excited chiral
doublet bands. So far, the only case of MχD with identi-
cal intrinsic configuration was observed in odd-A nucleus
103Rh with configuration πg−1

9/2 ⊗ νh11/2g7/2 [48]. The
B(M1)/B(E2) ratios of MχD in 103Rh were extracted
and exhibited weak staggering [48], which show the de-
viations from the present ideal cases. The deviations

might be attributed to the asymmetric configuration and
γ deviating far from 90◦.

The reason for the selection rule for electromagnetic
transition in terms of A values has been discussed in
Ref. [55]. Here, some more detailed explanation is given.
For the E2 transition operator in Eq. (9), the B(E2)
values can be obtained as following, if only the core con-
tributions are considered [28, 55]

B(E2, I → I ′)=Q2
0

5

16π

|
kpkn
∑

K,K′

CIK
kpkn

CI′K′

kpkn
[cosγ〈IK20|I ′K ′〉

− sinγ√
2

(〈IK22|I ′K ′〉+〈IK2−2|I ′K ′〉)]|2.

(13)

Table 4. Calculated wave functions at I = 17~ of bands 1−4 based on the configuration πh11/2 ⊗νh−1
11/2 coupled

with γ = 90◦ rotor. |kp,kn,K〉 is the basis of wave function. CIK
kp,kn

refers to expansion coefficient of basis. R3

refers to third component of core angular momentum. C is quantum number for the operator of exchange proton
and neutron, and A =expi π

2
R3 ·C.

band 1 band 2

CIK
kp,kn

|kp,kn,K〉 R3 C A CIK
kp,kn

|kp,kn,K〉 R3 C A

−0.107|−0.5,1.5,13〉 12
−1 −1

0.106|1.5,2.5,12〉 8
1 1

0.107|1.5,−0.5,13〉 12 0.106|2.5,1.5,12〉 8

0.145|2.5,4.5,15〉 8
−1 −1

−0.111|2.5,3.5,16〉 10
−1 1

−0.145|4.5,2.5,15〉 8 0.111|3.5,2.5,16〉 10

0.111|2.5,3.5,16〉 10
1 −1

−0.100|2.5,4.5,17〉 10
−1 1

0.111|3.5,2.5,16〉 10 0.100|4.5,2.5,17〉 10

... ... ... ... ... .. ... ...

−0.004|−4.5,5.5,15〉 14
1 −1

−0.005|−3.5,4.5,15〉 14
−1 1

−0.004|5.5,−4.5,15〉 14 0.005|4.5,−3.5,15〉 14

−0.009|−3.5,5.5,16〉 14
1 −1

0.009|−3.5,5.5,16〉 14
−1 1

−0.009|5.5,−3.5,16〉 14 −0.009|5.5,−3.5,16〉 14

... ... ... ... ... .. ... ...

band 3 band 4

0.107|0.5,3.5,10〉 6
−1 1

0.122|1.5,2.5,10〉 6
1 −1

−0.107|3.5,0.5,10〉 6 0.122|2.5,1.5,10〉 6

−0.103|0.5,3.5,16〉 12
1 1

−0.112|0.5,2.5,11〉 8
−1 −1

−0.103|3.5,0.5,16〉 12 0.112|2.5,0.5,11〉 8

0.121|2.5,4.5,17〉 10
−1 1

0.104|3.5,5.5,17〉 8
−1 −1

−0.121|4.5,2.5,17〉 10 −0.104|5.5,3.5,17〉 8

... ... ... ... ... .. ... ...

−0.005|−3.5,4.5,15〉 14
−1 1

−0.014|2.5,3.5,14〉 8
−1 −1

0.005|4.5,−3.5,15〉 14 0.014|3.5,2.5,14〉 8

0.005|−4.5,5.5,17〉 16
1 1

0.003|−4.5,5.5,17〉 16
−1 −1

0.005|5.5,−4.5,17〉 16 −0.003|5.5,−4.5,17〉 16

... ... ... ... ... .. ... ...

To get the non-zero E2 matrix elements, the wave
function of the valence proton and neutron in the ini-
tial state should be the same as the final state. This
means initial state and final state must have the same
symmetry under the exchange of valence proton and
neutron (∆C = 0). Furthermore, γ = 90◦ means that

cosγ〈IK20|I ′K ′〉 = 0. Therefore, only the E2 matrix
elements with ∆C = 0 and ∆R3 =K ′−K =±2 are non-
zero. The non-zero E2 matrix elements connect states
of R3 = ±4n, C = 1 (A = 1) with R3 = ±4n + 2,
C = 1 (A = −1), or connect states of R3 = ±4n,
C = −1(A = −1) with R3 = ±4n+2, C = −1 (A = 1).
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Thus the E2 transitions are allowed between levels with
different values of A, while forbidden with the same val-
ues of A.

For the M1 transition operator shown in Eq. (10),
M̂1 ∝ ĵp(µ) − ĵn(µ)(µ = 0,±1) when we take gp − gR =
−(gn − gR) for orbits g9/2,h11/2, i13/2. According to the
following relationships

(ĵp(0)− ĵn(0))(|kpkn〉+ |knkp〉)
= (kp−kn)(|kpkn〉−|knkp〉),

(ĵp(+1)− ĵn(+1))(|kpkn〉+ |knkp〉)

=

√

j(j +1)−kp(kp +1)

2
(|kn,kp +1〉−|kp +1,kn〉)

+

√

j(j +1)−kn(kn +1)

2
(|kp,kn +1〉−|kn +1,kp〉),

(ĵp(−1)− ĵn(−1))(|kpkn〉+ |knkp〉)

=

√

j(j +1)−kp(kp−1)

2
(|kp−1,kn〉−|kn,kp−1〉)

+

√

j(j +1)−kn(kn−1)

2
(|kn−1,kp〉−|kp,kn−1〉),

(14)

the component of the wave function with C = 1, acted
on by M̂1 transition operators, will change to ones with
C =−1, and vice versa. Therefore, M1 matrix elements
between the initial and final states with the same C val-
ues will be zero exactly. Because the M1 operator only
connects components with ∆R3 = 0, only the M1 tran-
sitions between states with different A values (same R3

and opposite C values ) are allowed, while those between
states with the same A values are forbidden. In the real
cases, gp − gR is slightly different from −(gn − gR), so
M1 transition probabilities between states with the same
A values are about an order of magnitude smaller than
those with opposite A.

The present selection rule is applicable to MχD with
the identical symmetric configuration in odd-odd nuclei.
The observation of the MχD with the identical symmet-
ric configuration in the odd-odd nuclei is expected in fu-
ture experiments to examine the present selection rule.

4 Summary

MχD based on γ=90◦ triaxial rotor coupled with
identical symmetric proton-neutron configurations are
studied by adopting the particle rotor model, in which
the configurations are πg9/2⊗νg−1

9/2, πh11/2⊗νh−1
11/2 and

πi13/2⊗νi−1
13/2 for the 80,130 and 190 mass regions, respec-

tively. The calculated wave functions of MχD are quan-
titatively analyzed for the first time and found to meet
strict symmetry under the operator Â. The selection rule
for the excited chiral bands and for the different mass re-
gions are examined by the numerical results. The selec-
tion rule for the electromagnetic transitions, namely M1
and E2 transitions are allowed between the levels with
different values of A while forbidden (or much weaker
for M1) between the levels with the same values of A,
holds true for the MχD with symmetric proton-neutron
configurations. The present results might be helpful to
identify MχD in experiment.
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