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Abstract: With the advances in accelerator science and technology in recent decades, the accelerator community has

focused on the development of next-generation light sources, for example diffraction-limited storage rings (DLSRs),

which require precision control of the electron beam energy and betatron tunes. This work is aimed at understanding

magnet hysteresis effects on the electron beam energy and lattice focusing in circular accelerators, and developing

new methods to gain better control of these effects. In this paper, we will report our recent experimental study of

the magnetic hysteresis effects and their impacts on the Duke storage ring lattice using the transverse feedback based

precision tune measurement system. The major magnet hysteresis effects associated with magnet normalization and

lattice ramping are carefully studied to determine an effective procedure for lattice preparation while maintaining

a high degree of reproducibility of lattice focusing. The local hysteresis effects are also studied by measuring the

betatron tune shifts which result from adjusting the setting of a quadrupole. A new technique has been developed

to precisely recover the focusing strength of the quadrupole by returning it to a proper setting to overcome the local

hysteresis effect.
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1 Introduction

With the advances in accelerator science and tech-
nology in recent decades, next-generation synchrotron
radiation sources will be developed with higher bright-
ness, better coherence, and improved beam control and
stability. For versatile, multi-user operation, the acceler-
ator community has focused on the development of next-
generation light sources based on diffraction-limited stor-
age rings (DLSRs) [1–4]. The development of DLSRs
faces a number of scientific and technological challenges
in several areas [5–8], including designing and operating
ultra-low emittance lattices (typically, tens of picome-
ters) with large enough single-particle nonlinear dynam-
ics, better control of beam parameters and beam insta-
bility compared with the third-generation light sources,
good beam lifetime with a limited dynamic aperture, etc.

Precision control of the electron beam energy and
betatron tunes in the storage ring is critical for next-
generation light sources to produce photon beams at ex-
act wavelengths as designed, and to realize good injec-

tion efficiency and beam lifetime without losing dynamic
aperture due to lattice focusing errors. The improved
beam parameter control can also greatly benefit the op-
eration of existing storage ring-based light sources. In
recent years, techniques have been developed to improve
the stability of the electron beam energy and orbit by
precisely controlling the air temperature in the storage
ring to the level of 0.1 ℃ [9]. In the last decade, two ad-
vanced techniques have been developed to measure the
absolute energy of the electron beam in the storage ring
with a relative accuracy of a few 10−5. One method
uses the Resonant Spin Depolarization (RSD) technique
for a high energy electron beam (typically above 1 GeV)
[10, 11], and the other uses the Compton scattering tech-
nique for a low energy beam (typically a few hundreds
of MeV) [12–14]. However, neither technique is readily
available to many operational light sources which do not
have a means to accurately measure the electron beam
energy during routine operation.

Since the 2000s, field-programmable gate array
(FPGA) based digital bunch-by-bunch longitudinal and
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transverse feedback systems have been widely utilized to
mitigate beam instabilities at light source storage rings.
The transverse feedback (TFB) has been used to make
precision measurements of betatron tunes for beam stud-
ies and for user operation. For example, at the Duke FEL
laboratory a precision tune measurement system was de-
veloped based upon the bunch-by-bunch transverse feed-
back (TFB) [15]. With this system, the betatron tunes
can be accurately measured with an rms uncertainty of a
few 10−5, as limited by the short-term stability of magnet
power supplies and the maximum data memory available
in the TFB system. This new diagnostic capability has
made it possible to carry out precision studies of various
effects related to the electron beam energy and betatron
tunes.

In this work, we report our recent experimental study
of the magnetic hysteresis effects and their impact on the
electron beam energy and focusing in the storage ring
using the TFB based tune measurement system without
the need for absolute beam energy measurements. This
precision tune measurement system has allowed us to
advance beam study in two areas. First, it has enabled
us to investigate the magnet hysteresis effect associated
with magnet normalization. The new insight from this
study has allowed us to experimentally determine the ef-
fectiveness of a particular magnet normalization routine,
thus providing a way to devise a more efficient magnet
normalization procedure. Second, using this system to
study the tune changes resulting from adjusting the set-
ting of a quadrupole, we have developed a new technique
to return the quadrupole to a proper setting to precisely
recover its focusing strength, overcoming the local mag-
netic hysteresis effect. The main experimental results in
these areas will be presented in the following sections.

2 Magnetic hysteresis effects

In this section, we provide a brief review of ferro-
magnetic hysteresis. Magnetic hysteresis describes the
nonlinear response of a ferromagnetic material to the
imposed magnetizing field (the H-field), producing hys-
teresis loops of finite areas when the H-field undergoes
repetitive cycles between two fixed values, see Fig. 1.
This lack of reproducibility of the material magnetiza-
tion for a given H-field, a “magnetic memory” effect, is
the result of the behaviors of the magnetic domains in
the material, as a certain amount of energy is needed to
reorient the magnetic domains, and/or change the do-
main wall boundaries and sizes.

The study of magnetic hysteresis has a long history
going back to the late 1800s [16, 17]. Since the mid-
1980s, however, hysteresis effects have become a sub-
ject of intense research by scientists and engineers from
a variety of research areas, which has significantly ad-

vanced our understanding of the hysteresis phenomenon
in general. Typically, two different approaches are taken.
The first is a physics based approach built on a cer-
tain statistical-mechanical theory by applying first-order
phase transition to analyze various spin systems [18–
20]. The second approach uses phenomenological mod-
els. Some of the most successful models are the Preisach
model [21], Coleman-Hodgdon model [22, 23], and Jilies-
Atherton model [24, 25]. The Jiles-Atherton model, de-
veloped in the early 1980s, connects the model param-
eters directly with the physical parameters of the mag-
netic materials, in particular, the spinning and rotation
of the magnetization in these materials [25–27]. This
model has also been successfully extended to describe
minor hysteresis loops [28].

Fig. 1. (color online) Hysteresis loops obtained on
a magnetic-curve tracer for soft iron bars. Solid
line a: cycle is performed slowly; Blue dash line b:
cycle is performed fast. Red dot line c: a minor
loop. [18, 31]

The well-known magnetic hysteresis effect is DC hys-
teresis, which is represented by a quasi-static loop show-
ing the equilibrium position of the bulk material magne-
tization. Since the 1980s, research has turned to investi-
gate the nonequlibrium behavior of frequency-dependent
hysteresis in different types of magnetic materials, in-
cluding non-conducting materials such as high frequency
ferrites [29] and electrically conducting materials [30].
The frequency-dependency studies of conducting mate-
rials, such as the soft iron used to construct accelera-
tor magnets, takes into account the eddy current effect.
However, it assumes that the magnetic field penetrates
uniformly throughout the material [30].

Even with significant advances in modeling and un-
derstanding magnetic hysteresis in recent decades, con-
trolling and managing the adverse effects associated with
magnetic hysteresis remains a very difficult and challeng-
ing task for present and future generation light source
storage rings. These challenges are manifest in several
areas, including (1) precise and accurate control of the
accelerator magnet field with a very small relative uncer-
tainty of 10−4 to 10−5; (2) managing magnetic hystere-
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sis associated with the skin effect, which can be impor-
tant for solid-core magnets even at a low field ramping
rate; (3) dealing with the interference of the magnetic
field from adjacent magnets. In this work, we will re-
port our experimental study of small changes in mag-
netic fields related to magnetic hysteresis using a preci-
sion tune measurement system.

3 Scaling the settings of dipoles and

quadrupoles

A typical way to study magnet hysteresis is to de-
termine the relation between the B-field and H-field by
measuring the B-H curve [32, 33], where the H-field is
produced by the coil current and the B-field is the non-
linear response to the H-field. However, it is impracti-
cal to directly measure the H-field and B-field in a well
installed facility like the Duke Storage Ring (DSR). In-
stead, we use the precision betatron tune measurements
to study the magnet hysteresis. In this section, we pro-
vide a brief view of how dipole and quadrupole magnet
field changes can be studied using the measured tune
changes.

The generic Hamiltonian of a charged particle in
a normal (non-skew) quadrupole, a sextupole, or a
combined-function quadru-sextupole under the impulse
magnetic field model can be expressed in the Cartesian
coordinate system as [34, 35]:

H(x,y,δ,px,py, l;s)≈
p2

x +p2
y

2(1+δ)
+

1

2
K1(x

2−y2)

+
1

3
K2(x

3−3xy2), (1)

where x, y are transverse displacements from the de-
signed orbits; px,y = Px,y/P0 are the scaled momenta
(canonical to x, y respectively) which are given by scal-
ing the momenta Px,y by the designed momentum P0; δ=
(P −P0)/P0 is the scaled momentum deviation with P
being the particle’s momentum; l is the path length; and
s is an independent variable, giving the particle’s orbital
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The linear focusing strength is given by K1(s)/(1+δ) =
P0K1(s)/P . Therefore, the betatron tune depends on
both the strength of the quadrupoles and the momen-
tum (or energy) of the charged particle. These observa-
tions are still valid even if we take into account the weak
focusing provided by the dipole magnets.

The momentum of the charged particle can be de-
termined by the integrated magnetic field it sees along
its closed orbit. Ignoring the betatron motions (as
the average effect is negligible for small amplitude, fast
transverse oscillations), the momentum of a relativistic
charged particle P is given by

P =
1

2πc

∫

closed-orbit

qBy(s)ds≈
1

2πc

∫

dipoles

qBy(s)ds. (4)

Hence the momentum P is proportional to the strength
of the dipoles. Consequently, for a storage ring, if the
strengths of all dipoles and all quadrupoles are changed
by the same relative amount, the betatron tunes of the
beam will remain the same. This is the basic princi-
ple for performing energy ramping in a storage ring or
in a booster synchrotron. This observation means that
the betatron tunes will be a good measure to deter-
mine discrepancies in the magnetic field changes between
quadrupoles and dipoles.

The above idea can be tested using a field strength
scaling method by measuring the betatron tune changes
as the result of proportionally changing only the dipole
magnetic field (Method 1), or only the quadrupole mag-
netic field (Method 2). Method 1 is a commonly used
technique to measure the storage ring natural chromatic-
ity in a conventional storage ring with only separate-
function magnets and with well-corrected beam orbits in
quadrupoles. Changing the magnetic field of all dipoles
alone by the same relative amount will cause a change
of the electron beam energy without altering the orbit in
the quadrupoles and other magnets (such as sextupoles),
resulting in a variation of betatron tunes caused only by
the change in effective focusing of all quadrupoles. In
Method 2, the electron beam energy remains unchanged
by keeping the same dipole magnetic field strength. The
betatron tunes will vary as the strength of all other
magnets (quadrupoles and sextupoles) is changed by the
same relative amount. In both methods, we expect that
the linear dependency of the betatron tunes on the rela-
tive change in the field strength will give the same value,
which corresponds to the natural chromaticity for a stor-
age ring with separate-function magnets. In fact, here we
are proposing an alternative way to measure the storage
ring natural chromaticity using Method 2.
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These effects are measured in the DSR by separately
scaling the magnetic field strength of all dipoles or all
quadrupoles/quadru-sextupoles. As shown in Fig. 2, the
betatron tunes show an opposite response in Method 2
compared to Method 1 by comparing subplot Fig. 2 (a)
vs (c) for the horizontal tune (νx) and Fig. 2 (b) vs
(d) for vertical tune (νy). The slope of the tune vari-
ations gives the measured natural chromaticity. In the
horizontal (vertical) direction, the tune slopes are −9.75
(−8.54) by varying dipole fields only, and 9.93 (8.73) by
varying quadru-sextupole fields only. The relative differ-
ence of 2% between the two different methods (in both
directions) is remarkably small, recognizing the fact that
the tune stability and accuracy of the tune measurement
system are of the order of a few 10−5 (absolute values),
and that the magnetic field stability and controllabil-
ity is of the order of a few 10−5 (relative), while the
total variation of betatron tunes and magnet strengths
are of the order of 10−2 (absolute) and 10−3 (relative),
respectively. These slope values are close to the natu-
ral chromaticity values from a design lattice which uses
only separate-function magnets ξx ≈ -9.8 and ξy ≈ -9.5.

The somewhat larger discrepancy between the measure-
ment and simulation in the vertical natural chromatic-
ity is likely the result of employing combined function
quadru-sextupoles in the real storage ring which are also
used as weak dipole magnets with a large reference or-
bit displacement in these magnets [36, 37]. In Fig. 2
(e) and (f), the measured tunes are shown as all mag-
nets (both dipoles and quadrupoles/quadru-sextupoles)
are varied by the same relative amount (up to 0.2%).
The measured tunes remain fairly constant in this range
without showing a particular trend, and the resultant
small tune variations (δνx ≈ 0.0005, and δνy ≈ 0.0007,
peak-to-peak) are at a level expected from various ex-
perimental limitations mentioned earlier. This exper-
iment has demonstrated two important results: first,
we have independent and accurate control of electron
beam energy (using dipoles) and focusing strengths (us-
ing quadrupole/quadru-sextupoles); second, the physics
idea that scaling the magnetic field in all magnets can
reserve tunes (an idea outlined earlier) works rather well
in this real storage ring with complicated combined-
function magnets.

Fig. 2. (color online) Measured betatron tune shifts by scaling the strength of the magnets of different types in the
DSR. The measured fractional tunes (νx and νy) are shown as a function of the change of the relative strength of
the magnetic field: subplots (a) and (b) for all dipole magnets, (c) and (d) for all quadru-sextupoles, and (e) and
(f) for both dipoles and quadru-sextupoles.

4 Major hysteresis effect

As mentioned in the previous section, by chang-
ing the rate of the magnetization process (commonly
known as “magnet normalization” in accelerator oper-
ation), a magnet can be magnetized to different levels
at the end of this process. The amount of time needed
to properly complete the magnetization process differs
for different types of magnets due to the differences in
their size, shape, material used, and the operation range

of the field. When the magnetization process is very
slow, all major magnets (dipoles, quadrupoles, etc.) will

have adequate time to be properly magnetized to reach

their expected field values for operation. However, to
save the setup time for operation, in practice, a faster

magnetization process is commonly used. This may re-

sult in some inconsistency between the magnetic fields

among dipoles and quadrupoles, leading to noticeable

magnetic lattice variations which will show up as beta-

tron tune variations.
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In a typical storage ring, lattice preparation is per-
formed to magnetize all major magnets in two steps.
First, the currents in these magnets are repeatedly
ramped between a set of pre-determined minimum and
maximum values for each type of magnets in a so-called
magnet normalization cycle. Second, the magnets are
ramped toward the final set-points for beam operation
(termed “lattice ramping” in this work). Using the DSR,
we have investigated these two processes separately using
the precision tune measurement system. In this section,
we describe our experimental procedures and report our
main findings.

For the DSR, all main magnets, including dipoles and
quadrupole/quadru-sextupole, were carefully character-
ized by performing magnetic measurements on each indi-
vidual magnet. These measurements were used to deter-
mine the mappings between the measured magnetic fields
and magnet coil currents; these mappings were later im-
plemented in an advanced physics based real-time ac-
celerator control system [38]. For the magnet measure-
ments, the magnet field ramping was usually performed
slowly in order to obtain a stable quasi-static magne-
tization curve. Ideally for acceleration operation, the
magnets should be prepared using a ramp rate which is
the same as or close to that used in the measurements
when possible. However, for practical reasons (e.g. to
save time and/or to ramp all types of magnets simul-
taneously), the magnet normalization for operation is
typically carried out at a different rate from that used
in the measurements for many storage rings. In the
DSR, the ramping rate of a typical normalization cy-
cle is rn = r0 = 10 MeV/s, and that of lattice ramping
is four times slower rl = r0/4 = 2.5 MeV/s. Both are
faster than the typical rate used for magnet measure-
ments rmeas ≈ 2 MeV/s.

To find out the impact of the magnet ramping rates
used in the normalization cycle and lattice ramping on
the final betatron tunes, three experiments are per-
formed on the DSR by varying the magnet ramping rate
in each process. In the first experiment, the rates of
normalization cycle and lattice ramping are the same
rn,1 = rl,1 for lattice preparation, and the betatron tunes
are measured for the lattices prepared with the ramp-
ing rate varied from r0/6 to 4r0. In the second exper-
iment, the rate of the normalization cycles is kept con-
stant rn,2 = r0 for all the measurements, while the lattice
ramping rate is changed in a range. In the third one, the
rate of lattice ramping is fixed, but the rate of each nor-
malization cycle is varied. The ramping rates for these
experiments are summarized in Table 1.

Table 1. Different ramping rates for magnet nor-
malization (rn) and lattice ramping (rl) are used
in the three experiments. All ramping rates are
expressed in terms of r0 = 10 MeV/s.

experiment rn (normalization) rl (lattice ramp)

1st Exp rn,1: r0/6 to 4r0 rl,1 = rn,1

2nd Exp rn,2 = r0 rl,2 : r0/4 to 3r0

3rd Exp rn,3 : r0/2 to 4r0 rl,3 = r0/4

To increase the lattice consistency in these experi-
ments, the storage ring lattice is prepared with a proper
procedure in which magnets are ramped to 638 MeV set-
tings after three normalization cycles. To reduce the im-
pact of beam current on the measured tunes, the beam
current in the storage ring is controlled between 4–4.5
mA and measured tunes are properly corrected to take
into account the transverse impedance related tune shift
with beam current [39].

Fig. 3. (color online) Measured fractional betatron tunes of a 638 MeV DSR lattice prepared with different ramping
rates used for the lattice setup. The first experiment: rn,1 = rl,1 and varied together; the second experiment:
rn,2 = r0 and rl,2 is varied; the third experiment: rl,3 = r0/4 and rn,3 is varied. Three sets of experiments were
carried out in three days.
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In the first experiment, the magnet ramping rates
for normalization and the last step lattice ramping are
kept the same, and changed from 1.7 (r0/6) to 40 (4r0)
MeV/s. The measured betatron tunes are shown as
starred data points in Fig. 3, with each data point
representing a complete process of lattice preparation,
beam injection, and steady state of storage ring opera-
tion for measurements. When the ramping rate is slow
enough, roughly r 6 5 MeV/s, the measured betatron
tunes (both horizontal and vertical) have very consis-
tent values; the measured tunes are found to approach
asymptotic values as the ramping rate r approaches zero.
This tune behavior can be modeled using an exponen-
tial decay as a function of 1/r, ν(r) = ν0 + Ae−B/r,
where ν0 is the asymptotic value, and A and B are
two characteristic parameters describing the hysteresis
effects (see the inset formulas for νx,1 and νy,1 in Fig.
3). The experimental finding of the asymptotic tune
values confirms the existence of the stationary hystere-
sis curve for magnets, which can be approached using
a proper normalization procedure at a slow ramping
rate.

When the ramping rate is increased from 5 MeV/s
to 40 MeV/s, the measured betatron tunes decrease
significantly. With faster ramping, the magnet field
strength is expected to be slightly smaller than the
stationary value, which can cause a tune increase due
to weaker dipole magnets (see Section 3) and a tune
decrease due to weaker quadrupole magnets. While
both effects are present in our experiment, from the
observed betatron tune reduction in both directions
at a higher ramping rate, we can conclude unambigu-
ously that the quadrupole effect dominates—the loss
of the relative quadrupole strength is greater than the
loss of the relative dipole strength with fast ramp-
ing. A total of about eight hours was used to carry
out the first experiment, which involved the study of
nine 638 MeV lattices prepared using different ramping
rates.

Faster magnet normalization is used in routine oper-
ation to save the lattice preparation time. The second
experiment is designed to validate this time-saving pro-
cedure developed based upon operational experience. In
this experiment, the ramping rate for the normalization
cycles is fixed at 10 MeV/s (rn,2 = r0) the same as in
routine operation, while the last step lattice ramping
rate rl,2 is varied from 2.5 MeV (r0/4 ) to 30 MeV/s
(3r0). The measured betatron tunes (circled data points
in Fig. 3) as a function of the ramping rate (rl,2) show
a very similar trend as in the first experiment, which
is easily seen by comparing two sets of fitting curves,
νx,1(r) vs νx,2(r), and νy,1(r) vs νy,2(r). Again, when
rl,2 6 5 MeV/s, the measured tune values are reason-
ably close to their respective asymptotic values, and at

a faster rate, a significant tune decrease is observed. Us-
ing the fitting model ν = ν0 +Ae−B/r, we can make an
estimate for the reasonable ramping rate. To achieve
a certain tune repeatability δν, the maximum ramping
rate is given by rmax = B/ ln(|A|/δν). In the horizon-
tal direction, a reasonable choice for tune repeatability
is δνx = 1× 10−4, which leads to r1,max = 4.6 MeV/s
(exp. #1) and r2,max = 4.8 MeV/s (exp. #2). In the
vertical direction, a reasonable choice for tune repeata-
bility is δνy = 2×10−4 (the overall focusing in the verti-
cal direction is about one half of that in the horizontal,
with Qx/Qy ≈ 0.46, where Qx,y are the total betatron
tunes), which leads to r1,max = 3.4 MeV/s (exp. #1)
and r2,max = 3.2 MeV/s (exp. #2). These estimated
rates confirm that the routine lattice preparation proce-
dure used in operation (10 MeV/s for normalization and

2.5 MeV/s for lattice ramping) is a conservative way to

achieve the desirable tune repeatability. In fact, a more
general observation can be made: with reasonably fast
normalization (in this example, rn = 10 MeV/s), the tune

reproducibility is mainly determined by the rate of final
lattice ramping.

To explore the possibility of even faster normaliza-
tion, a third experiment is designed to change the ramp-
ing rate for normalization (rn,3) while keeping the same

slow lattice ramping (rl,3 = 2.5 MeV/s). The measured

tunes are shown as squared data points in Fig. 3. We

notice a shift of the vertical tune asymptotic (by about

0.002) which is likely caused by changes of the storage

ring operational environment as this experiment was con-

ducted on a different day, including temperature changes,

less consistent orbits in the combined function quadru-
sextupoles, etc. These changes did not impact the over-
all trend of the measured tunes in the same day, which
always showed a high level of consistency (see Fig. 3).
Comparing the fitting curves among the three experi-

ments, we notice that in the third experiment, the pref-
actor coefficient A is much smaller (by a factor of 2.4
to 9.3) and the coefficient in the exponent B is larger

(by a factor of 1.4 to 2.6). Furthermore, using the same

tune reproducibility criteria, larger maximum ramp rates
are found with rmax = 12 MeV/s from νx,3(r) and 11

MeV/s from νy,3(r). In the horizontal direction, when
the normalization rate is larger than about 12 MeV/s,
the tune is shifted higher as the rate increases, a very
surprising finding which indicates the dipole hysteresis
effect is now dominating over the quadrupole effect. In

addition to reproducing the desired lattice tunes, the lat-
tice preparation is also aimed at producing an electron
beam with accurate energy, which requires the hysteresis

effect of the dipole magnets to be minimized. Hence it is

important not to carry out the normalization cycle too
rapidly.
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5 Local hysteresis effect

In routine operation or during machine study, the
setting of a dipole or a quadrupole/quadru-sextupole is
sometimes adjusted by a small amount for compensation
or correction. After bringing back the magnet setting,
the magnet field seen by the electron beam does not re-
turn to the previous value due to local hysteresis, and
the discrepancy in the field introduces perturbation to
linear and non-linear beam dynamics. In this section,
we will present our observations of this type of local hys-
teresis effect in adjusting quadrupole magnets using a
tune based technique, as well as a compensation scheme
for this local hysteresis effect, which is very important
for characterizing the lattice.

5.1 Beta-function measurement

To characterize a storage ring lattice, a series of di-
rect beta-function measurements can be carried out. A
widely used method to directly measure beta-functions
of an individually powered quadrupole is to change its
focusing strength by a small amount and measure the
corresponding betatron tunes. The beta-function aver-
aged for the length of this quadrupole can be expressed
as

β=
2

∆k1Leff

cos(2πν0)−cos(2πν ′)

sin(2πν0)
, (5)

where ∆k1 is the quadrupole strength variation, Leff is
the effective length of quadrupole, ν0 and ν′ are the frac-
tional betatron tunes of the unperturbed and perturbed
lattices, respectively.

Like most accelerators, the dipoles and quadrupoles
in the DSR were fully characterized during the magnetic
measurements before installation along the up-curve of
the hysteresis loop. The physics-based control system
at the DSR can properly set the magnets (dipoles and
quadrupoles) along the direction of increasing strength
[38]. For example, one can always increase the strength
of a quadrupole by changing its setting by ∆k1, positive
for a focusing quadrupole and negative for a defocusing
quadrupole. After a beta-function measurement, the set-
ting of the quadrupole magnet is usually brought back to
the original value to return the lattice back to the original
state. However, the focusing strength seen by the elec-
tron beams has changed slightly due to local hysteresis
in this quadrupole, leading to betatron tune shifts.

An example measurement is taken using focusing
quadrupole E04QF in the DSR. In this measurement,
the E04QF setting is changed in a local loop of ∆ ~K1 =
[0,∆k1, 0, –∆k1, 0], where ∆k1 is small compared to the
nominal quadrupole setting ofK1. The horizontal tune is
measured in sequence for each quadrupole setting, and
this local loop is repeated 6 times. The beam current
dependent tune shift is taken into account so that all
measured tune values are properly adjusted for a fixed
beam current [39]. To visualize the small shifts along the
local loops, a fish-eye plot technique has been developed.
The horizontal tune variation with the change of focusing
strength setting is shown in Fig. 4, and the related data
are collected in Table 2. Given the resolution of the TFB
based tune measurement system of about 4×10−5, the
non-reproducibility of betatron tunes after completing a
local loop can be easily measured.

Fig. 4. (color online) Measured horizontal betatron tune variations as the setting of quadrupole E04QF is adjusted
in small local loops. The storage ring is operating at 638 MeV. The grid lines are equally spaced with a tune
separation ∆ν = 0.0025 and K1 separation ∆K1 =0.0634 between any two adjacent grids.
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Table 2. Measured horizontal betatron tune varia-
tions ∆νx by ramping quadrupole E04QF in local
loops.

loop tune variations ∆νx [10−3]

∆K1

[

1

m2

]

0 0.254 0 −0.254

1 0 9.66 1.03 −8.83

2 0.48 9.66 1.06 −8.67

3 0.65 9.62 1.15 −8.70

4 0.61 9.71 1.13 −8.73

5 0.61 9.59 1.13 −8.72

6 0.60 9.71 1.12 −8.72

Equation (5) is employed to calculate the average
horizontal beta-function βx.i using the two consecutive
betatron tunes in each segment of the local loops in
sequence, i.e., using the i-th and (i + 1)th measured
betatron tune. The calculated beta-functions are com-
pared with the first measurement βx,1 (calculated using
the 1st and the 2nd tune measurements), which is mea-
sured along in the main hysteresis curve and considered
to be a “true” beta-function value of the quadrupole,
and the relative differences are shown in Fig. 5. As
shown in the case of i = 2, if this quadrupole setting is
changed along the reversed direction in the beta-function
measurement, the measured beta-function is found to be
more than 15% smaller than the true value. However,
if the measurement is executed a second time along the
up-curve of the hysteresis loop without normalizing this
quadrupole magnet (case of i= 5), an error of about 5%
is introduced. Therefore, to measure the beta-function
correctly, only betatron tunes measured along the up-
curve of the main hysteresis curve should be used. It is
also observed in Fig. 4 that the local loops approach a
quasi-static limit after repeating the loops a few times,
leading to a repetitive pattern in terms of relative

Fig. 5. Relative differences between the first mea-
sured beta-function βx,1 along the up hysteresis
curve and additional beta-functions obtained us-
ing the tune changes in subsequent segments of
the loops. Each loop is separated into four seg-
ments, for example, βx,2 = 2.06 m is calculated
using the second and third betatron tunes mea-
sured in the first local loop; βx,4 = 2.41 m is cal-
culated using the forth betatron tune measured
in the first local loop and the first betatron tune
measured in the second loop.

beta-function differences shown in Fig. 5. That means a
quasi-static minor hysteresis curve can be developed by
repeating a specified magnetization cycle. This observa-
tion is consistent with practices used to normalize major
magnets — the main storage ring magnets are repeat-
edly ramped between a set of maximum and minimum
settings without having to reach “full saturation” and
“negative full saturation” (a procedure not practical for
accelerators).

5.2 Local hysteresis compensation

After performing a beta-function measurement in a
quadrupole, the setting of the magnet is returned to the
original value by completing a closed local loop. How-
ever, the small discrepancy of the magnetic field in the
quadrupole leads to a small beta beating in the storage
ring, which can be estimated using

∆β (s)

β (s)
=−

2π∆ν

sin(2πν0)
cos(2ψ (s)−2ψ (s0)−2πν0) , (6)

where s0 is the location of the quadrupole, s is an ar-
bitrary location in the storage ring, ∆ν = ν ′−ν0 is the
betatron tune shift, and ∆ψ=ψ (s)−ψ (s0) is the phase
advance between s and s0. Even though both the tune
shift and beta beating caused by one single measurement
are small, these effects will accumulate over a series of
beta-function measurements. The accumulated effects
can become significant to make accurate beta-function
measurements impossible. Thus, a local hysteresis com-
pensation scheme is needed.

To precisely restore the storage ring lattice, the
quadrupole magnetic field needs to be precisely recov-
ered, which can be verified by checking the return of
the betatron tunes. In our experiment with quadrupole
E04QF, its final focusing should be set to ∆K1 = ∆k1,f

(the red star in Fig. 4) to recover the betatron tune
rather than to return the quadrupole setting ∆K1 = 0
(the blue circle in Fig. 4).

The final quadrupole setting ∆k1,f can be approached
by adjusting the quadrupole strength step by step along
the last (or fourth) segment of the first local loop. A typ-
ical process to determine ∆k1,f for a quadrupole in the
DSR is as follows. After ramping the quadrupole along a
local loop of ∆ ~K1 = [0,∆k1, 0,−∆k1] and measuring cor-
responding betatron tunes [ν0, ν1, ν2, ν3], the quadrupole
strength is first set to ∆K1 = −∆k1/2 and the corre-
sponding betatron tune ν4 is measured. By comparing
the initial betatron tune ν0 with ν4, the next adjustment
of the quadrupole strength δk can be estimated using
the tune difference ∆ν = ν0−ν4 and the slope S between
two previous measurements (ν3 and ν4) with δk= ∆ν/S.
To keep the quadrupole settings along the up hysteresis
curve, the final adjustment of the setting is done in multi-
ple steps with decreased step sizes. With a few iterations,
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the value of ∆k1,f is determined when the tune value is
within a small range from the original value ν0 (typically
δν = 4×10−5 or terminated after four iterations), as il-
lustrated by the black solid triangles in Fig. 4. Thus,
the special local loop of ∆ ~K1 = [0,∆k1, 0,−∆k1,∆k1,f ]
is found for a quadrupole to recover the lattice after a
beta-function measurement. Due to the local hysteresis,
the value of ∆k1,f for a quadrupole depends on the nom-
inal setting K1 and the variation step ∆k1 used for the
beta-function measurement.

This local hysteresis compensation scheme is devel-

oped and utilized in the lattice characterization for the
DSR, which employs direct beta-function measurements
of all quadrupoles. This scheme works rather well in re-
ducing the accumulated tune shifts, as shown in Fig. 6.
In the earlier measurements, the DSR needed to be nor-
malized twice to keep the accumulated tune shifts within
7× 10−3 in νx and 5× 10−3 in νy in the beta-function
measurements for all 78 quadrupoles. But with the im-
plementation of the local hysteresis compensation, the
tune shifts are reduced to 2×10−3 in νx and 1×10−3 in
νy without having to normalize the storage ring.
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Fig. 6. (color online) Accumulated tune shifts in the lattice characterization for the DSR with a total of 78
quadrupoles. The red circles are tune shifts before performing local hysteresis compensation; two normaliza-
tion cycles are used to keep the tune shifts in an acceptable range. Blue stars are the accumulated tune shifts with
the local hysteresis compensation scheme. The storage ring is operated at 638 MeV.

6 Summary and discussion

In circular accelerators, discrepancies in magnetic
fields due to the hysteresis effect in ramping magnets
introduce changes to the electron beam energy as well
as the storage ring magnetic lattice. Even though the
hysteresis effect can be reduced by using proper mag-
net materials and the lamination technique, it cannot be
eliminated completely. This can be a problem for next
generation light sources like DLSRs, which require better
control of the electron beam parameters and linear/non-
linear dynamics of the electrons. This work is aimed
at better understanding the magnet hysteresis effects in
storage rings and, furthermore, developing new methods
to precisely control the electron beam in operation and
machine study.

The main impact of magnet hysteresis has been stud-
ied experimentally using the TFB based precision tune

measurement system. The first part of this research was
carried out to demonstrate independent control of the
electron beam energy in the DSR by changing the rela-
tive strength of all dipole magnets, as well as indepen-
dent control of lattice focusing by varying the relative
strength of all quadrupole magnets (quadru-sextupoles).

Both are useful techniques to measure the natural chro-
maticity of the storage ring. In the second part of this

research, the hysteresis effect associated with the normal-
ization cycles and lattice ramping in the process of lattice

preparation has been studied in detail using a series of

measurements with three different ways to vary the mag-
net ramping rates. Our experimental results show that

the rate for the normalization cycles can be increased to

a certain level to save the lattice preparation time, and

good betatron tune reproducibility can be realized with

relatively slow final lattice ramping toward the operation
set-point. Based upon the experimental results, we have
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provided a way to estimate the maximum ramping rates
for both normalization cycles and lattice ramping.

To understand the local hysteresis effect, we have
studied the tune shifts due to focusing strength dis-
crepancy resulting from quadrupole adjustments in the
beta-function measurement. Observation in this experi-
ment suggests that the beta-function should be measured
along the up-curve of the main hysteresis loop. It also
indicates that a quasi-state local hysteresis loop can be
approached by repeating a special local magnetization
routine in the magnet. A local hysteresis compensation
scheme has been carefully developed to closely recover
lattice focusing by bringing back the betatron tunes af-

ter a beta-function measurement. With the application
of this scheme in the lattice characterization for the
DSR, the accumulated betatron tune shifts are signifi-
cantly reduced without having to normalize the storage
ring magnets during the process of measuring the beta-
functions for all 78 quadrupoles.

We would like to thank the engineering and technical
staff at DFELL/TUNL for their support of this research
work. One of the authors (Wei Li) also would like to
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