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High resolution image reconstruction method for a double-plane PET

system with changeable spacing *
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Abstract: Breast-dedicated positron emission tomography (PET) imaging techniques have been developed in recent

years. Their capacities to detect millimeter-sized breast tumors have been the subject of many studies. Some of them

have been confirmed with good results in clinical applications. With regard to biopsy application, a double-plane

detector arrangement is practicable, as it offers the convenience of breast immobilization. However, the serious

blurring effect of the double-plane PET, with changeable spacing for different breast sizes, should be studied. We

investigated a high resolution reconstruction method applicable for a double-plane PET. The distance between the

detector planes is changeable. Geometric and blurring components were calculated in real-time for different detector

distances, and accurate geometric sensitivity was obtained with a new tube area model. Resolution recovery was

achieved by estimating blurring effects derived from simulated single gamma response information. The results

showed that the new geometric modeling gave a more finite and smooth sensitivity weight in the double-plane PET.

The blurring component yielded contrast recovery levels that could not be reached without blurring modeling, and

improved visual recovery of the smallest spheres and better delineation of the structures in the reconstructed images

were achieved with the blurring component. Statistical noise had lower variance at the voxel level with blurring

modeling at matched resolution, compared to without blurring modeling. In distance-changeable double-plane PET,

finite resolution modeling during reconstruction achieved resolution recovery, without noise amplification.
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1 Introduction

Breast-dedicated positron emission tomography
(PET) imaging techniques have been developed in recent
years. Their capacities to detect millimeter-sized breast
tumors have been the subject of many studies [1−9]. It
has been shown that some of these systems are clinically
feasible and valuable in the detection of breast tumors
[8−11], and majority of them show better spatial resolu-
tion performance than whole-body PET.

The two main recent developments in breast-
dedicated PET are ring and plane detector arrange-
ments. In considering biopsy applications, a double-
plane detector design is more practical than a ring de-
tector because the plane PET is convenient for breast
immobilization. Besides, a double-plane system could
achieve greater sensitivity with small spacing covering a
large solid angle. However, the parallax errors could be

serious with a small plane spacing. The penetration ef-
fect of the 511 keV photons into the crystals is severer
when a photon is incident on the detector with a larger
oblique angle into the crystal faces [12]. The effect will
lead to deterioration in resolution, as well as offset the
advantages gained in sensitivity.

Some hardware approaches have been proposed to

compensate for the parallax errors, which could pro-

vide depth-of-interaction information [13−15]. However,

the complexity of detector design, the accuracy of mea-

surements, and the cost require further investigation.

Another approach to compensate the parallax error is to
establish an accurate system response matrix in recon-
struction [12, 16, 17]. Usually, the improvement in the
quality of reconstructed images depends on the accuracy
of the resolution model (RM) [18, 19]. In general, the
geometric component and detection physics effects infor-
mation, or blurring factor, of the system matrix should
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be well investigated in the resolution model.
The geometric elements of the system matrix can be

calculated by using a simple line integral model [20].
More complex models take line-of response (LOR) as
a tube [19, 21, 22], or are based on a solid angle [23].
To achieve feasible reconstruction times, pre-calculation
and storage of the system matrix are always required
in these cases, commonly with geometrical symmetries
used. In addition, improvement in spatial resolution can
be achieved by modeling detector blurring effects, in-
cluding crystal penetration, inter-crystal scattering, and
crystal misidentification [18, 24−26].

The positron emission mammography (PEM) Flex
Solo Scanner, produced by Naviscan Inc., was the first
commercial machine with a double-plane PET arrange-
ment. The 6 cm × 16.4 cm detectors are positioned in an
opposing fashion and can move to cover the entire 24 cm
× 16.4 cm field of view (FOV) [5]. Naviscan did not re-
port the correction method of parallax errors. Note that
the changeable distance for different breast sizes makes
this effect more difficult to address. Chien-Min Kao stud-
ied a reconstruction method for the double-plane detec-
tor, and achieved resolution recovery, as well as a dras-
tic reduction of the system response matrix [12]. How-
ever, the simulation studied is applicable for a system
with static plane spacing. When the distance changes,
the system response matrix (SRM) simulation should be
repeated for the new detector spacing. Therefore, this
method is not suitable for the breast imaging applica-
tion.

The demand for a new reconstruction method with
RM was motivated by the need for the design of the
spacing-changeable double-plane PET. With a compact
geometry and resolution model reconstruction method,
a high resolution and sensitivity performance could be
achieved. The final aim is to perform breast biopsy un-
der PET image guidance. We focused our method on
the geometric component and the blurring effect in the
double-plane PET. The RM method is a combination of
Monte Carlo simulation and calculation solution.

2 Materials and methods

2.1 Reconstruction for double-plane PET

We present a new RM method for resolution recov-
ery in the double-plane PET. The system has two op-
posing detector heads. The distance is changeable be-
tween PET planes for different breast sizes, see Fig. 1.
The figure also shows the orientations of the cross-plane
(blue) and in-plane (red) directions. In general, statis-
tical reconstruction methods are applied, and resolution
modeling is carried out in projection space with a three-
dimensional (3D) expectation-maximization algorithm.
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Fig. 1. (color online) The double-plane PET has
two opposing detector heads. The distance, d, be-
tween the planes is changeable for different breast
sizes. The orientations of the in-plane and cross-
plane directions are shown.

The system model is of vital importance to any imple-
mentation of an iterative reconstruction algorithm. We
denote the system matrix as P ∈RJ×I , the elements of
which, pij , model the probability that an event gener-
ated in a voxel j(j = 1 · · ·J) is detected along a tube-of
response (TOR) i(i = 1 · · ·I) [24]. The system matrix is
factorized as follows:

P = Pdet.sensPdet.blurPattnPgeomPpositron. (1)

Here, Pattn ∈RI×I is a diagonal matrix containing the
attenuation factors. We applied a calculated attenuation
correction method based on breast image segmentation.
Attenuation factors was obtained from re-projection of
the estimated attenuation map [27]. The diagonal de-
tector normalization matrix Pdet.sens ∈ RI×I is taken as
uniform for the simulated data generated from identi-
cal crystals. In addition, we simplified the model with
the 18F application and focused on effects other than the
positron range effect Ppositron.

In traditional PET systems, the element number of
the system matrix P is always a constant. However,
the changeable distance property means that the size of
the image space is variable in double-plane PET. With a
fixed voxel size, the voxel number J would change with
the space detected. The Pdet.blur and Pgeom factors are
related to the size of the image space. Therefore, the
two components should be calculated in real time for ev-
ery scan. With this new attribute, we focus on the two
components in our model.

2.1.1 The geometric projection matrix

Pgeom ∈RJ×I is a matrix that contains the geometric
mapping between the source and sino data. Each ele-
ment (i, j) of Pgeom ∈ RJ×I represents the probability
that a photon pair produced in voxel j reaches the front
faces of the detector pair i. The tube model is taken to
estimate the intersection joining the detector pair with
each voxel. The intersection area is used to estimate the
normed finite geometric weight.
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The image coordinate is defined as Cartesian (x,y,z).
When the double planes are exactly parallel, the middle
plane of the voxel section is parallel with the in-plane
direction. Figure 2 illustrates the relationship between a
voxel and tube in double-plane PET. Note that the upper
detector face u and the lower detector face l are parallel
with the intersection area c. The intersection area c with
the tube is always a rectangle for every element (i, j) of
Pgeom, see Fig. 3(a). The weight value of element (i, j)
can be parameterized by the area a(i, j) of rectangle c,
over which the area value is easily calculated in a par-
allel plane PET by defining the four side boundaries of
the rectangle. Formulas (2)-(6) illustrate the boundary
calculation method.

Fig. 2. (color online) The relationship between a
voxel and a tube. The tube connects detector el-
ement u (upper plane) and detector element l

(lower plane). The detector face u’ is the pro-
jection of u in lower plane. The intersection c

(marked as dark gray) is the area of the tube and
the center plane of the voxel.

a(i, j) = (Lright(i, j)−Lleft(i, j))×(Ldown(i, j)−Ltop(i, j)).
(2)

Lleft(i, j) = max(xvoxel,left(i, j),xtube,left(i, j)). (3)

Lright(i, j) = min(xvoxel,right(i, j),xtube,right(i, j)). (4)

Ltop(i, j) = max(yvoxel,top(i, j),ytube,top(i, j)). (5)

Ldown(i, j) = min(yvoxel,down(i, j),ytube,down(i, j)). (6)

The factor a(i, j) is the area value of the intersection
area c. Lleft(i, j), Lright(i, j), Ltop(i, j), and Ldown(i, j) re-
spectively represent the four side boundaries of area c,
which are all obtained by comparing the corresponding
boundaries of voxel and tube in the in-plane, as shown in
Fig. 3. For example, the left boundary Lleft(i, j) in for-
mula (3) is the larger x value between the left boundaries
of the voxel and the tube.

Fig. 3. (a) The finite weight model. (b) The inter-
section area of voxels and tubes.

Suppose that the detector element is 2 mm × 2 mm
and the image voxel is 0.5 mm × 0.5 mm in the in-plane,
the length of the tube side would be four times that of the
voxel, as illustrated in Fig. 3(b). We take the normed
intersection area as the finite weight of the value of the
Pgeom element. In the parallel double-plane system, the
intersection area is an approximation of the intersection
volume of the tube and the voxel.

2.1.2 The sinogram blurring matrix

Pdet,blur means the sinogram blurring matrix used to
model the photon inter-crystal penetration and inter-
crystal scatter effect. Crystals were treated as identical,
therefore effects associated with the location within each
block were ignored. In principle, the non-collinearity of
the photon pair should be accounted for. We therefore
simplified the model and focused on the inter-crystal pen-
etration and scatter effects. We did not include subject
scattering or positron range in the simulation work.

The detector planes are parallel to the in-plane,
located at positions z = ±d/2 (see Fig. 1). We
note that double-plane PET projection data are de-
scribed as (Cu0

,Cl0). Cu0
and Cl0 denote the in-

dented crystal element in the upper and lower detec-
tion planes, respectively. We assume Pdet,blur equals
a five-dimensional coincidence response function (CRF)
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(Cu0
,Cl0 ,d;Cut

,Clt). The function maps a given LOR0

(Cu0
,Cl0) to its blurred counterpart LORt (Cut

,Clt)
with a given distance d between the planes.

We defined the two directions of the detector tube as
the oblique angle ϕ and the azimuthal angle θ. Note
that (Cu0

,Cl0 ,d;Cut
,Clt) could also be expressed as

(Cu0
,Cl0 ,ϕ,θ;Cut

,Clt). With a given d value and the
incident LOR0(Cu0

,Cl0), the rotation angle ϕ and az-
imuthal angle could be determined as in formula (9).
∆y and ∆x describe the span in the y and x directions
of u and l in the in-plane (see Fig. 2).

CRF (Cu0
,Cl0 ,d;Cut

,Clt)

= CRF (Cu0
,Cl0 ,ϕ,θ;Cut

,Clt), (7)

ϕ = tan−1(∆y/∆x),0 6 ϕ 6π, (8)

θ = tan−1(−d/2
√

∆x2 +∆y2 +d2),0 6 θ 6π. (9)

The distance of source-voxel to detector has an effect
in the presence of axial mashing (spanning) in a ring de-
tector [18, 25, 28]. Nevertheless, the manner in which
the source-voxel distance affects the distribution of pen-
etration in double-plane PET must be studied. A back-
to-back gamma ray source at different distance positions
relative to the detector face was simulated with a spec-
ified incidence angle (ϕ = 0◦,θ = 45◦), as illustrated in
Fig. 4(a). The detector spacing was 2 cm, and the source
voxel position ranged from the center to the surface of
the lower detector plane, with a step of 1 mm, along
the TOR direction. The coincidence response of crystal
u0 with each crystal element of the below detector was
studied, and denoted as crystal l0, l1, l2 etc. In addition,
the profile of the response LOR0(Cu0

,Cl0) with its main
blurred counterparts in the lower plane LORi(Cut

,Clt)
was plotted, as shown in Fig. 4(b). The profile illus-
trates that different source positions turn as consistent
response distribution, and the distribution of the blur-
ring response is independent of the source position in a
double-plane PET.

On the basis of the above result, we assumed that the
response of gamma ray blurring effects in the plane PET
was independent of the source position, and primarily
affected by the incidence angle direction into the crys-
tal. In our current implementation, we approximated the
blurring effects as the probability product of two sepa-
rate single gamma ray penetration effects. In summary,
the general blurring function was expressed as a coinci-
dence response function (CRF) (Cu0

,Cl0 ,ϕ,θ;Cut
,Clt),

which can be described as follows.

CRF (Cu0
,Cl0 ,ϕ,θ;Cut

,Clt)

= SGRu(Cu0
,Cut

,ϕ,θ)×SGRl(Cl0 ,Clt ,ϕ,θ). (10)

Fig. 4. (color online) Back-to-back gamma ray
source with different distances to the detec-
tor were simulated at a certain incidence angle
(ϕ=0◦, and ϕ angle direction along with x axis,
θ=45◦). (a) The tested TORs in the double-plane
PET. (b) Response probability results.

The single gamma response SGR(Cu0
,Cut

,ϕ,θ)
function represents the crystal u0 response probability
when the gamma ray incidence to crystal ui, with an
oblique angle of ϕ and azimuthal angle of θ. With the
shift-invariance of double-plane, we focus on the vector
u0ut and l0lt . Note that there is origin symmetry be-
tween SGRu and SGRt functions, and the lower function
results could be easily obtained from the upper one.

The SGR was modeled along 2D crystal arrays with
different incidence angles. In addition, the SGR simula-
tion could be effectively reduced in consideration of the
plane system symmetry of angle ϕ. The symmetry is as
follows:

SGR(Cu,Cu′

0
,ϕ,θ) = SGR(Cu,Cu′

1
,90◦+ϕ,θ),

u′
0(x,y) = u′

1(y,−x), (11)

SGR(Cu,Cu′

0
,ϕ,θ) = SGR(Cu,Cu′

2
,180◦+ϕ,θ),

u′
0(x,y) = u′

2(−x,−y), (12)

SGR(Cu,Cu′

0
,ϕ,θ) = SGR(Cu,Cu′

3
,270◦+ϕ,θ),

u′
0(x,y) = u′

3(−y,x). (13)

With the reduction, the simulation of SRF was effec-
tively reduced to 1/4, with angle ϕ ranging from 0 to 90
degrees.

The simulation was developed on the basis of the
work of Xin [29], and extended into the 3D implementa-
tion. The single photon incidence response was obtained
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with Monte Carlo simulation, and the Geant4 method for
emission tomography software was used. A 2D crystal ar-
ray with 33 × 33 crystal elements was created, as shown
in Fig. 5 (only 5 × 5 elements are illustrated). The
simulated crystal size was 1.9 mm × 1.9 mm × 10 mm,
with a 0.1 mm gap filled with polyvinyl chloride (PVC),
which is the same set as in the double-plane PET. The
simulation was performed by rotating the single detec-
tor along the x and y axles with two directions, θ and ϕ.
The incident single gamma ray was sent into the center
crystal u0. The two directions both ranged from 0 to 90
degrees, with all the incidence angles spanned for differ-
ent plane distances. There were a total of 18 × 18 (324)
directions to simulate with a 5-degree step.

Fig. 5. Single gamma response simulation.

The simulated single gamma ray response results of
three incidence angles are shown in Fig. 6. Plots from
(a) to (c) illustrate the signal gamma response at 30, 45,
and 60 degrees, respectively. The response result turns
a distribution of the event counts collected within the
crystals. In most conditions, the reaction happened in
the gamma ray trajectory, while most crystals outside
the trajectory obtained few events. The final blurring
factor was calculated on the basis of a single gamma ray
response using the formula (11). The simulated SGR

is discrete within a 5-degree range, and the particular
SGR with an identified incidence angle was calculated
from the simulated SGR by linear interpolation.

The accuracy of the calculated CRF derived from the
SGR was tested. Three incidence angles were chosen to
compare the real CRF with the calculated CRF results,
and the calculated value was derived from the prod-
uct of SGRu(Cu0

,Cut
,ϕ,θ)×SGRl(Cl0,Clt ,ϕ,θ) . The

real CRF was simulated and obtained with the Monte
Carlo method, and the incidence angles were chosen as
ϕ = 0◦,θ = 30◦,45◦,60◦ for convenient simulation. Figure
7 shows a comparison of the results obtained with the
real and calculated CRF. The crystal chosen and data
selection are similar to that in the source position study.
The profile showed that the calculated CRF (upper pro-
file) was a good approximation to the real CRF (lower
profile).

2.2 Double-plane PET data representation

Traditionally, whole-body PET with a ring detector
always gives the measured data in (r,φ) sinogram mode.
The matrix is arranged such that each row represents
parallel line integrals or a projection of the activity at
a particular angle φ. Each column represents the radial
offset from the center of the scanner, r [30]. However, in
a double-plane PET, the bin number for each acquisition
angle φ is not a constant. A more oblique angle φ covers
fewer bin numbers in r. The (r,φ) sinogram mode is not
applicable for double-plane PET data organization.

The new data structure is collected with crystals
in upper detector one by one. The projection data
are sorted in a four-dimension al function (xupper,
yupper,xlower,ylower). They represent the x and y index of
the upper and lower crystals respectively. This result is
organized in a 100×75×100×75 array. The image slices
of the projection data are shown in Fig. 8. Although
the data representation is different from a ring PET, the
sinogram data are still taken as projection data in this
study.

Fig. 6. Simulated single gamma ray response results with three incidence θ angles.
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Fig. 7. Coincidence response function of TOR. The upper slice is calculated CRF and the lower slice is real CRF.
x and y axes show relative element positions in detector coordinates.

Fig. 8. Double-plane PET projection data representation.

2.3 PET implementation of the algorithm

To evaluate the algorithm, a PET system with two
opposing detector heads was simulated. The distance
between the two detector heads ranged from 1 cm to 6
cm, assuming this to be the distance range for breast
imaging application. Both detectors contained 75 × 100
LYSO crystal elements. The crystal size was 1.9 mm ×
1.9 mm × 10 mm, with a 0.1 mm gap filled with PVC.
Note that the SGR simulated data were generated from
the same crystal configuration as the opposing detec-
tor system, but with a proper crystal element number.
Data acquisition and reconstruction were performed in
3D. The algorithm operation is described by matrix P in
Equations (1–10). The matrix size of the reconstructed

images in the in-plane was 400 × 300, with a pixel size
of 0.5 mm. In the axial direction, the image pixel size
was 1 mm. The image slice number was defined by the
detector spacing, d. The geometric and blurring factors
were both assessed, and the reconstruction was acceler-
ated with OpenMP parallel programming support. The
reconstruction using the blurring factor modeled system
matrix was referred to as the RM reconstruction. To as-
sess the impact of the geometric components on the im-
age quality, a cube (16 pixels in side length) and a sphere
(16 pixels in diameter) source with 18F were placed in
air. The two shapes both had an activity concentration
of 5000 Bq/ml. Reconstructions without blurring factor
were tested with three different geometric weights: the
ray-driven model [20], the solid weight model [19], and
the new tube area model, respectively. The sino data
were reconstructed with EM (30 iterations, no subsets).
All ranges of data in the sinogram were used.

A numerical micro-Derenzo phantom was used to
generate noise-free data and to test the blurring factor.
The diameters of the hot spots in the phantom were 2.4
mm, 2.0 mm, 1.7 mm, 1.35 mm, 1.0 mm, and 0.75 mm,
respectively, and the center-to-center distance between
the spots was twice the hot spot diameter. All the hot
spots had an activity concentration of 5000 Bq/ml. The
height of the phantom was 10 mm, with the axis verti-
cal to the in-plane direction. The phantom was located
at the center of the FOV. The distance between the two
detector heads ranged from 1 cm to 6 cm, with the recon-
structed image slices ranging from 10 to 60. Data were
reconstructed by the 3D maximum likelihood estimation
model, with (RM) or without (no-RM) the blurring in-
formation in the SRM. Only the true coincidence events

were used. We chose the image reconstructed after 15

iterations and plotted the images in the center in-plane

slice.

The noise properties were evaluated with a cylin-

der contrast phantom (cylinder length 10 mm, radius 27

mm). This phantom consisted of five hot spherical in-

serts of decreasing size, containing a uniform background
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activity concentration of 5000 Bq/ml. The embedded
five hot spheres had a radius ranging from 1 mm to 5
mm, and all had a 4:1 ratio to background activity. The
phantom was placed at the center of the FOV. The de-
tector distance was 2 cm. Contrast recovery and noise
characteristics were investigated and compared between
the RM and no-RM algorithms. The contrast ratio was
tested for each sphere i. The ratio value was calculated
by the mean signal for each sphere Si, against the back-
ground, Bi. Background volumes of interest (VOIs) of
the same volume as the spheres were chosen between dif-
ferent in-planes at each sphere’s (x,y) location.

The contrast ratios for each sphere were as follows:

contrast ratio=
〈Si〉

〈Bi〉
(14)

The background SN for each sphere was then found
using:

SN =
std〈Bi〉

〈Bi〉
(15)

where 〈 〉 represents the mean and std( ) is the stan-
dard deviation across all pixels.

3 Results

3.1 Geometric component

Figure 9 shows the comparison results of the ray-
driven model [20], the solid weight model [19], and the
new tube area model, respectively. It shows that a dra-
matic improvement is obtained with the latter. A fairly
smooth result was obtained with the tube area model,
while artifact errors are shown in the other two models.

Fig. 9. Reconstructions of source data for different
geometric models. (a) Ray-driven model (b) solid
angle model (c) tube area model.

3.2 Blurring component

Figure 10 shows the reconstructed image of the micro-
Derenzo phantom. The hot rods with a diameter of 1.35
mm are identified in both the RM and no-RM image
data. In addition, the structure of the region containing
1.0 mm diameter rods are also observed in the data with
RM data, while hot rods of the same size are blurred in
the no-RM data. The RM data show an improved visual
recovery of the smallest spheres, and better delineation
of the structures in the RM reconstructed images are
observed. The no-RM data show an increased blurring
effect as the detector distance becomes smaller. The re-
sults show the profiles of the third line hot spots in the

micro-Derenzo phantom. Overall, the contrast of the hot
rods against the background remained identical in RM
and no-RM. The graph of the selected three group hot
rods show that slimmer profiles were observed when RM
was used, leading to lower spatial variance. All the im-
ages are shown with the same viewing window width,
but slightly different viewing means.

3.3 Quality study

Figure 11 show the impact of the RM on reconstruc-
tion of the noise properties. The contrast ratio plot
show that the background contrast was improved with
RM data for each sphere size. However, the background
noise ratio was decreased with each VOI for all sizes
of sphere. It was confirmed that RM significantly re-
duced the voxel variance to a level comparable with the
level that was obtained after reconstruction without RM.
Figure 11 demonstrates that higher positive correlations
with adjacent voxels were observed when RM was used,
leading to lower spatial variance.

3.4 Computation burden

Table 1 shows the reconstruction parameters of the
system. Although the double-plane system is compact
and small, there is still a 1.35×1014 (the image ma-
trix size × the sinogram matrix size) computation bur-
den. The reconstruction time performance was tested
with different span data. The sinogram data were recon-
structed with all, 1/2, 1/4 and 1/8 span respectively, to
test the computation burden. Computation times with
one iteration are listed as follows, as well as the image
results after one iteration (see Table 2 and Fig. 12).

Table 1. Parameters of reconstruction method.

parameters values

image space/cm 20×15×2

voxel size/mm 0.5×0.5×1.0

image size 400×300×20

crystal number/detector 100×75

crystal size/mm 1.9×1.9×10

sinogram size with all span 100× 75×100×75

Table 2. Reconstruction time.

span
coincident no-RM recon RM recon

event(×104) time/min time/min

8/8 606 21.23 86.23

4/8 473 9.53 40.62

2/8 191 2.86 11.98

1/8 58 0.75 1.63

Figure 12 shows that the RM reconstruction gives
image recovery with more data information, as well as
prolonged time consumption. With all the span data, the
RM method took more than 86 minutes to perform one
iteration.
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Fig. 10. (color online) Micro-Derenzo phantom results.

Fig. 11. (color online) Quality phantom results.

RM

no-RM

Span 8/8 4/8 2/8 1/8

Fig. 12. Quality phantom results.
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4 Discussion

The results show that RM in the reconstruction pro-
cess improved spatial resolution (giving improved delin-
eation of the structures), improved contrast recovery, and
also improved the noise properties of the images. The
method has the following features: (1) it is applicable
for different plane distances; (2) it is efficient in simula-
tion; (3) it is effective for resolution recovery; and (4) it
is robust in noise suppression.

When employing double-plane geometry, the artifacts
that result from missing data mean that the existing an-
alytic reconstruction methods will not work well. In con-
trast, based on a statistical model, iterative reconstruc-
tion algorithms are capable of maximizing resolution re-
covery by accurate modeling of the system response. Fur-
thermore, iterative reconstruction methods can optimize
performance in low-count situations. Therefore, an it-
erative method was applied in the present study. The
accurate system modeling was focused on geometric and
blurring components.

It is interesting to note that the artifacts in Fig. 9(a)
and (b) are grids shaped in both x and y axial directions.
The errors were probably generated as a result of the dis-
continuous “square pixel” modeling of the reconstructed
image. The discrete contribution could be compensated
in a full ring detector with oversampling data. However,
the effect cannot be ignored in the plane system while the
data are missing in the sampling transection. Based on
the intersection area between voxel and tube, the algo-
rithm provides superior accuracy and smooth geometric
sensitivity weights without loss of resolution. Further-
more, the tube area model has the advantages of the
parallel attributes of the image space, and is applicable
for the double PET system.

The blurring component was based on a single
gamma response calculated model. The simulated single
gamma response matrix size is a trade-off between pre-
cision and computation burden. We took 33×33 crystals
in SGR simulation because the blurred TOR number is
a 4th power of the simulated crystals. That means for
each incident TOR, 334 blurred TORs should be calcu-
lated. (The corresponding computation burden will be
discussed later in the limitations). When the incidence
angle is extremely oblique, precision for the tail-cut is
lost because of the limited simulated crystal array. How-
ever, the precision lost is less obvious in the reconstructed
result, as shown in the micro-Derenzo phantom and qual-
ity phantom. In addition, a simulated matrix reduction
to obtain a fast computation rate is currently in further

study.
Operating as in traditional mammography, the sys-

tem could result in substantial parallax errors. When
the distance between the double-planes becomes smaller,
the TOR is more likely to encounter an oblique angle.
Reconstructed images with 1 cm spacing showed severe
blurring effects that were relieved when the plane dis-
tance became large. In a ring PET detector, to obtain
images with an acceptable level of resolution uniformity,
most systems restrict their FOV to 1/2–2/3 of the detec-
tor ring size. Nevertheless, in the double-plane system,
the reconstructed results of the micro-Derenzo phantom
demonstrated that the blurring effects could be well com-
pensated for, even with a plane distance of 1 cm. There-
fore, the system configuration could make use of more
span data and achieve a shorter scanning time without
loss of resolution.

The reconstruction time is the limitation of this
method. With a changeable distance between the planes,
the problem is more complicated, since the system re-
sponse matrix should be calculated in real time. As the
time performance showed, the RM method took more
than 86 minutes to complete one iteration for all the
span data. Although the blurring effect were well recov-
ered, the method is still not applicable for the computa-
tion burden reason. Therefore a graphics processing unit
(GPU) acceleration method would be expected.

There is another limitation that should be seriously
taken into consideration: the gaps between the blocks in
the real system are not constant, but the system simu-
lation and the CRF simulation were both based on the
assumption that gaps between crystals were all the same.
How this simplification would affect a real system should
be further tested with hardware. That means the block
edge effect is ignored. The positron range effect is neg-
ligible with 18F tracers, but should be considered for a
new radiotracer with a larger positron range.

5 Conclusions

A high resolution reconstruction method for a double-
plane PET system was studied for breast imaging. The
plane spacing is supposed to be changeable. A finite ge-
ometric sensitivity model was applied, and an RM de-
rived from a single gamma response was studied. In
addition, resulting improvements in contrast recovery
of small structure and noise properties in images were
demonstrated. This approach makes a high spatial res-
olution reconstruction method available for differently
sized breast imaging applications.
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